APPROVED

VXI-4-5.5 and 7.5 kW Series

Frequency converter
Operation Manual

VITOLUX

vito aroup

1 Safety Precautions and Product Model..

1.2 Nameplate Introduction:...
1.4 Technical Index and Specification .. 2

2 Installation and Wiring
2.1 Operation Environment

1 Intalling Direction and Space
..
Dinension of Keypad
Basic Running Wi
2.5 Baic Running Wiring... 6
2.7 Major Loop Terminal WirIng... 7
2.8 Control Loop Terminal Diagram... 7
2.9 Control Loop Terminal Fnnction Table ...
2.10 Dial Switch...
.. 2.11 Wiring Notices

3 Operatian Panel and Operation Method .. 9
3.1 Operation Panel Key! 9
3. LED and Indicator Light Description: ... 10
3.3 Manitoring Parameter Display.. 10
3.3 Manitoring Parameter Display ..

3.5 Manfunction Alarm Dispiay .. 11
3.6 Function Code Editing Display... 12
3.7 Monitoring Parameter
3.8 Function Code Setting.. 13

4 Function Parameter Table and Devcription.. 15
41 Monttoring Parameter Gronp and Fault Record ... 15
4.1 Function Code... 18
4.2 Detailed Function Deseription .. 45

1 Process PID Parameter ... 79
FA Protection Perameter .. 92
FA Protection Parameter ... 97

1 1EPanel Function Setting and Parameter Management (PD group reaerved) .. 98
5 Communication Protocol
108
5.1 RTU mode and format.. 108
5.2 Register Address and Function Code ... 108
5.3 Functions of other Reginter Addrens: ... 113
5.4 Fininculin
.114
5.5 Pre-alarm Code of the Driver:...
5.6 Control Cammand Format (see fnnctian code 06H erample): ... 115
5.7 Paramer mmblit .. 116

14 Error Code from Slave Reaponse of Abnormal Information: .. 116
5.9 Communication Addres of all Parameters: ... 116
\qquad
6.1 Fault information and Tronble...
6.1 Fault information and Tronbieshooting ... 119

7 Malntenance.. 121
7.1 Routine Maintenance
7.2 Periodic Maintenance
1.1 Safety Precautions

 saffety regulation and other electric code.
A After power off, do not touch internal circuit board or any parts inside within 5 minutes after keypad display wert off. Any internal operation nust be after making sure of discharge off with instrument checking to avoid the electric Any in
A Do not connect AC power to output terminal (U, V, W) of inverter. The only terminal the AC power allowed to be connected is $\mathrm{R}, \mathrm{S}, \mathrm{T}$ (or L1, L 2 single-phrase source inverter).
A Static electricity on human body can damage MOS device. Do not touch PCB and IGBT without anti-static measure.
D Dot lose screws, spacers and other metallic foreign bodies inside the driver to avoid fire harard and driver damage.
A Do not connect 220 V AC power to internal control terminal of the driver, or there will be serious damage to the driver.

- If overcurrent protection occurs after start the driver, confirm again the external wiring and then power on and rum the diver.
A Do not switch off the power to stop the diver. Cut off power source after the motor stops ruming.
A Do not install the driver in places with direct sunlight.

1.2 Nameplate Introduction:

1.3 Hpo Serfes Type

Voltage Classes	Rated Power (KW)	Rated Output Current (A)	Adapted Motor (KW)
220 V 1-phase	0.75	4.5	0.75
	1.5	7	1.5
	2.2	10	2.2
$380 \mathrm{~V} 3-\mathrm{phase}$	0.75	2.5	0.75
	1.5	3.7	1.5
	2.2	5.0	2.2

1.4 Technical Index and Specification

言	Bual whata, Frequency	3-phase (4T\#sereis) $380 \mathrm{~V} ; 50 / 50 \mathrm{HZ}$1-phase (2S\#series) $220 \mathrm{~V} ; 50 / 60 \mathrm{HZ}$	
	Hicert Voltage Range	3-phase (4T\#series) $320 \mathrm{~V} \sim 460 \mathrm{~V}$1-phase (2S\#series) $160 \mathrm{~V} \sim 260 \mathrm{~V}$	
9	Whyp	4T\#series; $0 \sim 460 \mathrm{~V}$ 2S\#series; 0~260V	
	frequency	Low frequency mode: 0~300HZ; High frequency mode: $0 \sim 3000 \mathrm{HZ}$	
	Overload Capacity	G type: 110% for long-term, 150% for $1 \mathrm{~min}, 180 \%$ for 5 s P type: 105\% for long-term, 120\% for $1 \mathrm{~min}, 150 \%$ for 1 s	
Control Mode		V/F control, advanced V/F control, V/F separation control, electric current vector control	
$\frac{8}{8}$	Frequency Father Resolution	Analog Input	0.1\% of maximum output frequency
		Digital Setting	0.01 Hz
	Frequency Precision	Analog Input	Within 0.2\% of maximum output frequency
		Digital Setting	Within 0.01\% of set output frequency
	V/F Control	V/F Curve (voltage frequency character)	Reference frequency setting $5^{\sim} 600 \mathrm{~Hz}$, multipoint V / F ewivt setting, or fied curve of constant torque, low decreasing torque 1 , low decreasing torque 2 , square torque
		Torque Compensation	Manual setting: 0.0~30\% of rated output Automatic compensation: according to output current and motor parameter
		Automatic Current-limiting and Voltage-limiting	During acceleration, deceleration or steady running, detect automatically the aurrent and voltage of motor stator, and control it within bounds binid on unique algorithm, minimize fault-trip chance
	Henter Holor certad	Voltage Frequency Character	Adjust pressure/frequency ratlo according to motor parameter and unique algorithm
		Torque Character	Starting torque: $3.0 \mathrm{~Hz} 150 \%$ rated torque (VF control) $0.5 \mathrm{~Hz} 180 \%$ rated torque (SVC, FVC) 0.05 Hz 180\% rated torque (VC) Operating speed precision in steady state: $\leqslant \pm 0.5 \%$ rated synchronous speed Torque response: $\leqslant 50 \mathrm{~ms}$ VC, SVC, FVC $\leqslant 20 \mathrm{~ms}$
		Motor Parameter Self-measurement	Being able to detect parameter automatically under static state and dynamic of motor, thus guarantee an optimum control.

啫		17	Output frequency, output current, output voltage, motor speed, set frequency, module temperature, PID setting, feedback, analog input and output.
		3	The luniet 6 faults record; running parametiver record when the latest fault tripping happens including output frequency, set frequency, output current, output voltage, DC voltage 4 and module temperature.
Putermen futile			Overcurrent, overvoltage, undervoltage, module fault, electric thermal relay, overheat, short circuit, default phase of input and output, motor parameter adjustment abnormality, intemal memory fault, etc.
星	Temper		$-10^{\circ} 0^{\sim}+40^{\circ} \mathrm{C}$ (please run the VFD In derated capacity when amblent temperature is $40^{\circ} \mathrm{C}$ ~50 C)
	Amblen Humidity		5\% 95\%RH, without condensing drops
	Surroun	Ings	Indoors (without direct sunlight, corrosive or flammable gas, oil fog and dust)
	Altitude		Running in derated capacity above 1000 m , derate $\mathbf{1 0 \%}$ for every 1000 m rise.
+	Protection Level		IP20
	Cevel-4 Hedw		Air cooling with fan control
frulution Werved			Wall-hanging type, cabinet type

2 Installation and wiring

Check if the voltage of power inlet wire agrees whth rated input voltage of VFD.

Injury and fire hazard
2. Connect brake resistor or brake unit according to wiring dlagram.

Fire hazard.

3. Choose screw driver and wrench with specifled torque to fasten terminals.

 Fire hazard.4. Do not connect the power Input wire to output $\mathrm{U}, \mathrm{V}, \mathbf{w}$ terminals.

It will cause internal damage to VFD if load the voltage on output terminals.
5. Do not dismantie the front panel cover, only the terminal cover needs to be dlsmantled when wiring. It may cause internal damage to VFD.

2.1 Operation Environment

(1) No corrosive gases, vapors, dust or oily dust, no direct sunlight.
(2) No floating dust and metal particle.
(3) Ambient humidity $\mathbf{2 0 \%}{ }^{\sim} 90 \% \mathrm{RH}$.
(4) Vibration less than $5.9 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{~g})$.
(5) No electromagnetic interference.
(6) Ambient temperature $-10^{\circ} \sim 40^{\circ}$. Ensure good ventilation when ambient temperature exceeds $40^{\circ} \mathrm{C}$.
(7) Use electric ewhet or inmet control mithell in non-standard operation emvironment and mivit good ventiation and heat dissipation. The service life of VFD lies in installing environment and operation condition. Nivem in tindaris environment, a long-term continuous running can guarantee a life of no mivit than 5 years for electrolytic capadtor and about 3 years for cooling fan. An update or a thorough maintenance in advance is recommended.
2.2 Installing Direction and Space

To ensure a good cooling cycle, the VFD must be installed vertically, and keep enough space from surroundings.

2.3 Appearance and Dimension of Keypad

2.6 Major Loop Terminal Wiring

2.7 Major Loop Terminal Diagram

2.8 Cantrol Loop Terminal Diegram

2.9 Control Laep Terminal Function Thith

Category	$\begin{aligned} & \text { Thmat } \\ & \text { numpel } \end{aligned}$	Functions	Specification
Multi-functional Digital Input Terminal	II	Effective when short circuit between(X1, X2, X3, X4, X5, X6, X7, X8) \sim COM, and the functions are set by parameters $\mathbf{F 7 . 0 0 \sim F 7 . 0 7}$ (common port: COM)	INPUT, $0 \sim 24 \mathrm{~V}$ wignal, low level effective, 5 mA .
	\%		
	$\underline{1}$		
	$\underline{4}$		
	5		
	\%		
	X6	terminals, also as high-speed pulse Input terminal 	
Digital Output Terminal	Y1	circuit output chumil 2, an be programmed as bo terminal of various functions (common port: cow	OUTPUT, maximum liad currents50mA.
	Y2		
	D0	various functions as many 13 kinds (common port: COM). See F6.23. Al1 receives voltage/current input. Jumper CW4 (for jumper terminal Al1) inill select voltage or burrent input mode, and voltage input is the default one. For current Input, Just short the midifir and another pin with the jumper cap. Al 2 	rangeF6.32~F6.35, set maximum frequency as high as 50 KHz .
Analos Input/Output Terminal	AI1		INPUT, input voltage minge $0 \sim$ 10 V (input impedance: 100K), input current $\mathrm{mq} 0 \sim$ igmi
	AT2		

A Control terminal Al1 can input both voltage and current signal, while Al2 can only input voltage signal; verti can conduct corresponding jumper on master control board according to signal type.

- Connecting week analog signal is easily affected by external disturbance. So wiring should be as short as possible. The external control line should be set with isolating device or shielding line, and should be grounded.
A Input order signal line and frequency meter should be wired separately with shielding, and away from major loop wiring.
A Control loop wiring should br over $0.75 \mathrm{~mm}^{2}$, and STP (shielded twisted pair) is recommended. The connecting part of control loop terminals should be enameled with tin, or process metal joint with cold pressing.
- While connecting analog signal output devices, malfunction may occur because of interference from VFD, which can be solved by fixing with capacttor or ferrite bead to the analog signal output device.

215 Duaswith

$\cdots \cdots$
$\mathbb{P +}+\cdots \rightarrow$ -

	AO2
	AO2 of AO2/DO is effective, output voltage signal
DO	DO of AO2/DO is effective, output pulse signal
JP2	

2.11 Wiring Notice

(1) Cut off the input power of VFD while dismantling and changing the motor.
(2) Switching of motor or work frequency power supply should only be conducted when the VFD stops output.
(3) To reduce the effect of EMI (electromagnetic interference), add a surge absorber when electromagnetic connector and relay are close to VFD.
(4) Do not connect AC input power to output terminal $\mathrm{U}, \mathrm{V}, \mathrm{W}$ of VFD .
(5) Add an isolating device to the extemal control line or use shield line.
(8) Input order signal line should be wired separately with shielding, and away from major loop wiring.
(7) When carrier frequency is less than 4 kHz , keep the distance between VFD and motor within 50 m ; when carrier frequency exceeds 4 kHz , make an appropriate reduction of the distance, and better lay the wire in metal tube.
(8) When adding peripherals (filters, reactors, etc.) to the VFD, check the ground resistance with 1000 V tramegger and ensure the value is above $4 \mathrm{M} \Omega$
(9) Do not add phase advance capacitor or RC snubber to the $\mathbf{U}, \mathrm{V}, \mathrm{W}$ terminal of VFD.
(10) If the VFD starts frequently, do not cut off the power, use the COM/RUN of control terminal to conduct start and stop so as not to damage the rectifier bridge.
11 The earth terminal must be grounded reliably (grounding impedance should be under 100Ω) to avoid accidents, or there might be electric leakage.
12 Choose the wire diameter according to national electrical code while conducting major loop wiring.

2.12 Spare Circuit

It may cluty th downtime loss or other accidental failure during VFD failure or tripping. Adding spare circuit is recommended under this circumstance to ensure safety. Note: confirm and test the operation characteristic of the spare circuit in advance to ensure the working frequency and the phase sequence of corverted frequency are agreed.

3 Operation Panel and Operation Method
3.1 Operation Panel Keyz

Key	Name	Function Description		
	programming lescape key	Enter or escape from programming		
	Enift/monitor			
key				Choose the bit of the data which is to be set and modified when the VFD is in
:---				
edit status; switch monitor parameter to be shown when the VFD is in other				
modes.	\quad Enter into sub-menu items or confirm data. \quad.			

	Run key	Enter into run mode under keypad model．
3	stop／reset key	In ciemman run status the VFD will be stopped according to set mode after press this key if run command channel is set as keyboard stop effective mode． when the VFD is in malfunction status．
	Analog potentiomet er knob	linkage control with increase／decrease key．
3	Increase key	Data or function code increase（speed up the increasing rate by keeping pressing the key）
31	Deprume key	Data or function code decrease（speed up the decreasing rate by keeping pressing the key）

3．2 LED and Indicator Light Descriptiont

Table 3－1 LED and Indicator Light Description

Item			Function Description
	Digital Display		Display current run status parameter and set parameter．
	最富	Hz，A，V	Displayed physical quantity unit（current A，voltage V，frequency Hz ）
		ALM	Alarm indicator light，indicate that the VFD is in over current or over voltage suppressing status or failure alarm status currently．

		FWD	This indicator light tums green when the VFD is in forward running status．
	REV	This indicator light tums red when the VFD is in reverse running status．	
	REMOTE	Remote control indicator．	

圑若㽞	A	Current displayed parameter is current with unit of A，LED indicater light A is on
	V	Current displayed parameter is voltage with unit of V，LED indicator light V is on
	Hz	Current displayed parameter is frequency with unit of Hz ，LED indicator light Hz is on
	\％	Current displayed parameter is percentage，LED indicator light Hz and V are on
	r／min	Current displayed parameter is rotational speed，LED indicator light Hz and A arre on
	m／s	Current displayed parameter is linear velocity，LED indicator light V and A are on
	C	Current displayed parameter is temperature，LED indicator light V, A and Hz are on

3．3 Monitoring Parameter Display

Keypad display status is classified as power－on initialization display，functicn code and monitoring parameters display， malfunction alarm status display，run status parameters display．After power－on，LED will display＂P．OFF＂，then enter setting frequency display status．
When the VFD is stopped，the keypad displays stopped then monitoring parameters，factory setting is digital setting
frequency．As is shown in figure 3－2，unit indicator light reminds that the unit of current displayed parameter is Hz ．
Press key \square different monitoring parameters in stopped state can be displayed circularly（default setting in sequence is main setting frequency，bus voltage．Other monitoring parameters can be set to display by function code FE．10－FE．11，for details see function code table FE．10－FE．11）；or without pressing ，but set tens place of FE． 12 as 1 （alternate display of main and secondary parameters），wat tat ptopped state monitoring parameters will display circularly every other second
 Θ

3．4 Run Status Parameter Display

The VFD enters into run status when receiving effective run command and rum status monitoring parameters normally output frequency is displayed on the keypad．As figure 1－4 shows，unit is displayed as Hz ．
Press \square ，the current run status parameter will display circularly（default set is output frequency，output current，two monitoring parameters in inperen ．Other parameters display can be set by FE．08－FE．09，for details ter parameter codes table FE．08～FE．09）；or without pressing（ - ，but set tens place of FE． 12 in 1 （alternate display of main and secondary
 monitoring menu by pressing ，and check each monitoring parameter by

Fig 3－1 Power－on Parameter Display Initialization Display＂P．OFF＂

Fig 3－2 Stop Status Parameter Display Display Set Frequency ${ }^{\text {² }} 50.00^{\prime \prime}$

Fig 3－3 Run Status Parameter Display Display Current Output Frequency＂20．00＂

3．5 Malfunction Alarm Display

The VFD enters into malfunction alarm display status upon detecting failure signal and display failure code（as shown in Fig 3－4）；Press $\bigotimes_{\text {to cbeck relative parameters of stopped inveter；to check failure information，pras }}^{\text {and enter into }}$ program mode to check D group parameter．After troubleshooting，conduct fault resetting by hy in the keypad，by control terminal or communication command．Keep displaying fault code if fault exist continuously．

Fig 3-4 Fault Alarm Display of Over current during Accelerating
Warning:
For some serious fault, such as inverse module protect, over current, over voltage, etc., do not conduct fault reset forcibly to make the inverter run again without fault elimination confirmed, or might cause damage to the inverter.

3.6 Function Code Editing Display

Under stop, run or fault alarm status, press
key to enter editing status which is displayed as two classes menu (input the password first if it is preset, let password unlock instruction). Press hey to enter items wellass by one class. Under finction parameter display status, press to conduct storage operation, press $_{\text {key to return to the upper class }}$ menu without storing modified parameter.

3.7 Monttoring Parameter

Example 1: status parameter display switching
Under monitoring status, press key, the display will switch automatically to according value of monitoring parameter according to FD group status monitoring parameter setting and meanwhile the corresponding unit indicator light will be on.
For example, press
switch to output frequency D-00, and the indicator light of unit "Hz" is on.

Example 2: check monitoring parameter item d-05 (output current) Method 1:
 key, LED displays function code d-00, flicker bit stays in pait place, adjust Ley of key until the monitoring code turns d-05.
(2) Press
(3) Press \bigcirc key, the according value of d-05 displays and the indicator light of unit " A " is on
(3)

Method 2:
Under monitoring mode interface, press key, switch to ment monitonir plameter item d-xx, presskey to move flicker bit to aret digit of the remtirnt code, then adjust Hey or Hey until the monitoring code displays d-05,

(1) Undet fault status presskey and check D group monitoring parameter ranging from D-00 to D-57.
(2) If the fault wasn't eliminated during checking the fault parameter, the interface will automatically switch to fault alarm display 5 s later after stopping operation.
(3) The fault code displays ranging from D-48 to D-57 (the current status and latest 3 times).

17 Muncils Code latine

The function parameter system of this inverter includes function code F0~FF, fault code E group and monitoring code D group. Each function group is consisted of several fumction code, which is marked as (function group code + function code). For example, "F5.08" means eighth function code in the fifth function group.
Function code setting example:
Example 1: change frequency setting of forward jogging form 5 Hz to 10 Hz ($F 1.20$ modified from 5.00 Hz to 10.00 Hz)
(1) Press key key to enter programming status, LED displays function code F0.00, flicker bit stays in the ones digit.
(2) Presil
(3) Presi cey, 班wite flicker bit among the hundreds place, tens place and ones place.
(4) Presskey to modify the digit in the according digit place. LED displays F1.20. key, it displays the according value (5.00) of F1.20, meanwhile the indicator light of unit Hz is on.
(5) Press key, move the flicker bit to the highest place " 5 ", press \square sey 5 times to change it to 10.00 .
(B) Press
(7) Press key, save the value of F1.20 and displays next fumction code F1.21.
Press key, escape from programming status.

3.9 User Paswword Setting and Functian Code Edit

User password setting is used far preventing unauthorized people form checking and modifying function parameter. Factory set of user password F 0.00 is " 00000 ", user can conduct parameter setting in this interface (parameter set here is only not restricted by password protection, but is restricted by conditions like whether is revisable during nunning, the monitoring parameters, etc.).

When setting the user password, press five-digit number and press \qquad to confirm, the furwin will take effect utomatically 3 minutes later, or just power down to make it effective. After that, if tw display "-Err-", and when checking function codes, all will display "--" except the password item ldily Phomit
 "-En--".

When password modifying is required, choose function code F0.00, and pressto enter password authentication status.
to confirm

（1）Press to enter programming status，LED displays function code F
（2）Press

（4）Press \qquad

（5）Press to enter F1．03，repeat step 2 and step 3 ，check according data＂ 00000 ＂of F 0.00 ．
（8）Press password is set up．
（7）Pressit displays＂－En－－＂，meanwhile function code displays F0．01．
（8）Repeat step 2 and step 3，check the according data＂ 00000 ＂of F 0.00 and modify it to＂ 55555 ＂，press $P_{t o}$ the password changing，enter F 0.01 item．
$\bigoplus_{\text {key or }}$
（8）Repeat step 2 and step 3 ，check the according data＂ 0.0 ＂of $F 1.02$ ，conduct modifying by
（10）Press ${ }^{\text {Ne }}$ ，escape from edit status．

4 Function Parameter Table and Description

4．0 Monitoring Parameter Group and Fault Record

D Group－Monltoring Parameter Group and Fault Record					
Function Code	hurin	Lill mity	Minimum Unit	Factory Default	Mochinit
d－00	Output Frequency	$0.00 \sim$ maximum output frequency【F0．15】	0.01 Hz	0.00	\bullet
d－01	Set Frequency	$0.00 \sim$ maximum output frequency【F0．15】	0－654	0.00	\bullet
d－02	Enimelel Hotal Frequency	$0.00 \sim$ maximum output frequency【F0．15】 Herte motor running frequency converted from estimated motor speed	0.01 Hz	0.00	－
d－03	Mbs Set Frequency	$0.00 \sim$ maximum output frequency【F0．15】	0．01Hz	60］	\bullet
d－04	Auxiliary Set Frequency	$0001 \sim$ maximum output frequency【F0．15】	0．01Hz	0.00	\bullet
d－05	Output Current	0．0～6553．5A	0．1A	0.0	\checkmark
d－06	Output Voltage	0～999V	1V	0	－
d－07	Output Torque	－200．0～＋200．0\％	0．1\％	0．0\％	－
doll	Motor Revolving Speed（RPM／min）	0～36000（RPM／min）	1	0	\bullet
d－09	Motor Power Factor	0．00～1．00	0.01	0.00	\bullet
d－10	Run Linear Velocity （m／s）	0．01～655．35（m／s）	$0.01 \mathrm{~m} / \mathrm{s}$	0.00	\bullet
d－11	Set Linear Velocity （m／s）	0．01～655．35（m／s）	$0.01 \mathrm{~m} / \mathrm{s}$	am	\bullet
d－12	Bus voltage（V）	0～999V	1V	0	－
d－13	Input Voltage（V）	0～999V	1V	0	$\stackrel{\rightharpoonup}{*}$
d－14	PID Set Value（V）	0．00～10．00V	0．01V	0.00	$\stackrel{\rightharpoonup}{*}$
d－15	PID Feedback（V）	$0.00 \sim 10.00 \mathrm{~V}$	0．01V	0.00	$\stackrel{\rightharpoonup}{*}$
d－16	Analog Input A11（V／mA）	$0.00 \sim 10.00 \mathrm{~V}$	0．01V	am．	\bullet
d－17	Analog Input Al2（V）	$0.00 \sim 10.00 \mathrm{~V}$	0．01V	0.00	－
d－18	Impulse Frequency Imput（KHz）	$0.00 \sim 50.00 \mathrm{KHz}$	0．01KHz	0.00	\bullet
d－19	Analog Output A01（ V / mA ）	$0.00 \sim 10.00 \mathrm{~V}$	0．01V	0.00	\bullet
d－20	Analog Output AO2（V）	0．00～10．00V	0．01V	0 BL	\bullet
d－21	Input Terminal Status	0～FFH Note：the sequence from high to low order digit in binary system $\times 8 / \times 7 / \times 6 / \times 5 / \times 4 / \times 3 / \times 2 / \times 1$	1	0	\bullet
d－22	Output Terminal Status	$0 \sim \mathrm{FH}$ Note：the sequence from high to low order digit in binary system $\mathrm{R} 2 / \mathrm{R} 1 / \mathrm{V} 2 / \mathrm{Y} 1$	1	0	\bullet

d－23	VFD Running Sertus	O～FFFFH вाT0：run／scop BIT1：reverse／forward arrar wiscospeed rumning АІा3：reserver BIT4：accelerating ETIS．decelersting BITS：constant speed ruining 日IT7，pre exaitation BITS：tuning of VFD parameter AITY，overcurement limit ETT10，overvaltage limit 日Ti1：ampritude limiting of torque BrT12，amplitude limxiting of speed BIT13：speed control arr14，tarque cuntrol BIT15：reserved	1	0	－
d－24	Current stage of multistege speed	$0 \sim 15$	1	0	－
d－25	reserved	－	－	0	＊
d－26	reserved	－	－	0	－
d－27	Current count value	0～65535	1	0	\bullet
d－28	Set count value	0～65535	1	0	－
d－29	Current timing valuels）	0～65535s	15	0	－
d－30	Set timing valuelS ${ }^{\text {］}}$	0～655355	15	0	－
d－31	Current length	0．000－65．535（K．M）	0.001 KM	0.000	－
d－32	Set length	$0.000 \sim 55.535(\mathrm{KM})$	0.001 KM	0.000	\bullet
d－33	Radiator Temperature 1	$0.08^{\circ} \sim+110.0{ }^{\circ} \mathrm{C}$	0.18	0.0	－
d－34	タadiator Temperature 2	$0.0 \mathrm{C} \sim+110.0 \mathrm{C}^{\circ}$	0.15	0.0	－
d－35	accumulative run time of VFO（hour）	0～65535	1H	0	－
d－36	accurnulative Dower－on time of VFD（hrour）	0～65535H	1H	0	－
d－37	atcoumulative run time of fan（hour）	O～65535	1H	0	－
d－38	Accumulathe electricity consumption（low order diglt）	D－9999KWH	IKWH	0	\bullet
d－39	Accumulathe electricity consumption（hish order digit）	0～9999KWH（ ${ }^{10000}$ ）	1KWH	0	－
d－40	Spedial model monitaring parameter （reseryed）	－	－	0	－
d－41	Spedal madel monitaring	－	－	0	－

	panmeter ［reserved				
d－42	5 perial moxdel montoring paramete （reserved）	－	－	0	\bullet
d－43	Speclal model montitarine parameter （reserved）	－	－	0	－
d－44	Speclal model menttoring parameter （reserved）	－	－	0	\bullet
d－45	Sperial mordel montorins parameter （reserved）	－	－	0	\bullet
d－46	Special mootel mernitoring parameter （resenved）	－	－	0	－
d－47	Special model mernitoring parameter （reserved）	－	－	0	－
d－49	The third to last fault type	$0 \sim 30$	1	0	－
d． 49	The second to last frult type	0～30	1	0	－
d．50	Last fault type	D ~ 30	1	0	－
d．SI	Current faull type	0－30	1	0	\bullet
d． 52	Run frequemgy of current faut	$0.00 \sim$［F0．161 upper limit off frequesmey	0.024 Hz	0.00	－
d．53	Output curremt of current fart	0．0 $\sim 6553.5 \mathrm{~A}$	0．14	0.0	－
d．54	Bushar woltage of ourtent faut	0－999v	1V	0	\bullet
d．5s	Input terminal stathus of current faut	$0-F F H$ Note：sequence from high to tow order digit in blary sprtem $\times 8 \times 7 \times 6 \times 5 \times 4 \times 7 \times 2 \times 1$	1	0	\bullet
d．58	Output terminal status of current fault	$O \sim F H$ Notesequemer from hlyh to law order digit in blinary system Ry／V2／in	1	0	－
d． 57	Run state of culfent fault	O～FFFFH	1	0	－

4.1 Furims Col

F0 Group - Basic Run Parameters					
Funtion cote	Hent	Set Range	$\begin{aligned} & \text { Hromum } \\ & \text { Lhat } \end{aligned}$	$\begin{aligned} & \text { Festur } \\ & \text { peltr } \end{aligned}$	Modification
Fono	User password	$0-4858$ Note 1: 0~9; without password protect Note 2: It takes 3 minutes to take effect of the successfully set password Hetremind ith witprotat 	1	0	0
F 0.01	Cuntid idtart wntion	1.00~99.99	0.01	1.00	-
F 0.02	Genilowiral 	1.00~99.99	0.01	1.00	\bullet
F 0.03	VFD rated power	0.4~999.9KW (G/P)	0.1KW	54preiry cal made	\bullet
F 0.04	VFD type	0 : it type leontist bequilasd type) 1: P type (fan, water pump load type) Note 1: set as \mathbf{P} type, and the VFD parameters will refresh automatically, without modifying any parameter the VFD can be used as itverter of higher grade for application of fan and water pump. Note 2: can not be initialized, plem fod limunt	1	0	\times
F 0.05	Control mode	torque boost) 1: advanced V/F control (automatically torque boost) 2: open loop current vector control (SVC) 3: closed loop curmt vector control (rserved) 4: separatd type V/F control Note 1: choose control method 3 (closed loop current vector control), input terminal X6 can only be used for ordinary terminal, not for high-speed pulse welt	1	Depending on model	x

		initialized, please modify it manually.			
F 0.06	operation command channel	channel 1: terminal run command channel 2: communication run command d.ver	1	0	0
F 0.07	Main frequency source \mathbf{A}	encoder+F0.12) 1: digital set 2 (terminal UP/DOWN adjust +F0.13) 2: digital set 3 (communication set) 3: Al1 analog set $(0 \sim 10 \mathrm{~V} / 20 \mathrm{~mA})$ 4: Al2 analog set ($0 \sim 10 \mathrm{~V}$) 5: pulse set ($0 \sim 50 \mathrm{KHZ}$) 6: easy PLC set 7: multistage speed run set 8: PID control set 	1	0	-
F 0.08	Auxiliary frequency source B	0 : digital set 1 (keypad $\boldsymbol{\Delta / \nabla}$ key, encoder+F0.12) 1: shtulatatmint	1	3	0
		thpowniac, 2: digital set 3 (communication set) 3: Al1 analog set ($0 \sim 10 \mathrm{~V} / 20 \mathrm{~mA}$) 4: Al2 analog set ($0 \sim 10 \mathrm{~V}$) 5: pulse set ($0 \sim 50 \mathrm{KHZ}$) 6: easy PLC set 7: multistage speed run set 8: PID control set 			
F 0.09	Frequency source	0: inat trapoency yourt 1: $A+K^{\boldsymbol{*}} \mathrm{B}$ 2: A-K ${ }^{\text {B }}$ 3: $\left\|\mathrm{A}-\mathrm{K}^{+} \mathrm{B}\right\|$ 4: $\operatorname{Mz}\left(A, K^{*} B\right)$ 5: 4 ($\mathrm{H}, \mathrm{K}^{*} \mathrm{~B}$) 6: switch from A to $K^{*} B$ (A prior to $\mathrm{K}^{*} \mathrm{~B}$) 7: switch form Ato (A+K*B) (A prior to $\mathrm{A}+\mathrm{K}^{*} \mathrm{~B}$) 8: switch form A to ($A-K^{*} B$) (A prior to A-K"B) Note 1: frequency switch needs Note 2: compared with frequency source set method, traverse 	1	0	0

F 0.10	Digital set 1 control	LED ones digit：power down storage 0：storage 1：not storage LED tens digit：hold when stop 0 ：Aroll	1	gop	0
F 0.11	Digital set 2 control	1：not hold LED hundred digit： $\mathbf{~ / ~} / \boldsymbol{\mathrm { k }} \mathrm{ky}$ ， UP／DOWN frequency 0 ：Inveld 1：wh LED thousands digit：reserved	1	昒0	－
F 0.12	Fraquiny mimith chenemat 1	Dighr－（Ras）uppenitiof theuter	0.01 Hz	50.00	0
F 0.13	Frequrnymule of Hinumb？	finurly	0.01 Hz	7040	0
F 0.14	Bualming－wna source weight sombercith	0．01～10．00	0.01	1.00	0
F 0.15	Maximum output frequency		0.01 Hz	480	\times
10．14	Upimelinal hegumey	［16．2］\sim［10．13］	diotri	5500	x
F 0.17	Lumrlinit fruyty	$0.00 \mathrm{~Hz} \sim$［ $\mathrm{HC4}$［ $]$	0.01 Hz	500	\times
F 0.18	Frequency output mode	On low hequany modatios＝ 300.00 Hz ） 1：high frequency mode（ $0.0 \sim$ 3000.0 Hz ） Note：high frequency mode is onyminchets	1	0	\times
F 0.19	Acceleration time 1	$\begin{aligned} & 0.1 \sim \operatorname{ponios} \\ & 0.4 \sim 450 \mathrm{~F} \\ & \hline .5 \mathrm{~s} \end{aligned}$	0.15	Depending on model	\bigcirc
F 0.20	Deceleration time 1		0.15	Depending on model	\bigcirc
F 0.21	Running direction	0：forward 1：ifmer 2：prevent reversing	1	0	\times
F 0.22	Carrier frequency	$1.0 \sim 16.0 \mathrm{KHz}$ $0.4 \sim 4.0 \mathrm{KW}$ 6.0 KHz $1.0 \sim 16.0 \mathrm{KHz}$ $5.5 \sim 30 \mathrm{KW}$ 4.5 KHz $1.0 \sim 16.0 \mathrm{KHz}$ $37 \sim 132 \mathrm{KW}$ 3.0 KHz $1.0 \sim 10.0 \mathrm{KHz}$ $10-100 \mathrm{KW}$ 1 MHI $10 \sim 400 \mathrm{HI}$ 	0.1 KHz	Depending on FWber	0

F 1.00	Start mode	0：start at start frequency 1：DC braking＋start at start frequency 2：start with speed tracking	1	0	\times
F 1.01	Start frequency	$0.00 \sim 50.00 \mathrm{~Hz}$	0．01Hz	1.00	－
F 1.02	Start frequency hold time	$0.0 \sim 100.0 \mathrm{~s}$	0．1s	0.0	－
F 1.03	DC brake current at startup	$0.0 \sim 150.0 \%$＊rated current of motor	0．1\％	60¢	0
F 1.04	DC brake time at startup	0．0～100．0s	0．1s	0.0	\bigcirc
F 1.05	Accelerating and decelerating mode	0：IInear Acc／Dec mode 1：S curve Acc／Dec mode	1	0	\times
F 1.06	Time ratio of initial segment in S curve	10．0～50．0\％	0．1\％	30p	0
F 1.07	Time ratio of ending segment in S curve	10．0～50．0\％	0．1\％	Sm	0
F 1.08	Stop mode	0 ：Decelerate to stop 1：coast to stop	1	0	\times
F 1.09	Frequency threshold of DC brake	$0.00 \sim$ 【F0．16】upper limit frequency	0．01Hz	500	0
F 1.10	DC brake delay time	0．0～100．0s	0．1s	0.0	0
F 1.11	DC brake current	$0.0 \sim 150.0 \%$＊rated current of motor	0．1\％		0
F 1.12	DC brake time at stop	0．0～100．0s	0.15	0.0	\bigcirc
F 1.13	Acc time 2		0.1	Depending on model	0
F 1.14	Dec time 2		0.1	Depending on model	\bigcirc
F 1.15	Acc tinme 3		0.1	Depending on model	－
F 1.16	Dec time 3		0.1	Depending on model	\bigcirc
F 1.17	Asc timne 4		0.1	Depending on model	0
F1．18	Dec time 4		0.1	Depending on model	\bigcirc
F 1.19	Acc／Dec time unit	0：second 1：minute 2：0．1s	1	0	0
F 1.20	Frequency setting of forward jog operation	$0.00 \sim$ 【F0．16】upper limit frequency	0.01 Hz	5.00	\bigcirc
F 1.21	Frequency setting of reverse jog operation	$0.00 \sim$ 【F0．16】 upper limit frequency	0．01Hz	5.00	\bigcirc
F 1.22	Jog Acce time		0．1s	Depending on model	－
F 1.23	Jog Dec time		0．1s	Depending on model	0
F1．24	Jog interval time	0．0～100．0s	0.15	0.1	0
F1．25	Hopping freq． 1	$0.00 \sim$ upper limit freq．	0．01Hz	0.00	\bigcirc
F1．26	Hopping freq． 1 range	$0.00 \sim$ upper limit freq．	0.01 Hz	809	0
F1．27	Hopping freq． 2	0．00～upper limit freq．	0.01 Hz	0.00	0

F1．28	Hopping freq． 2 range	0．00～upper limit freq．	0．01Hz	0.00	\bigcirc
F1．29	Hopping freq． 3	$0.00 \sim$ upper limit freq．	0.01 Hz	0.00	0
F1．30	Hopping fre． 3 range	$0.00 \sim$ upper limit freq．	0.01 Hz	0.00	－
F 1.31	Action when int freq． is lower than lower limit freq．	0 ：run at lower limit freq． 1：run at zero freq．after delay time（start without delay） 2：stop after delay time（start without delay）	1	0	＊
F 1.32	Delay time of stopping when freq．is lower than limit（simple sleep）	$0.0 \sim 3600.0 \mathrm{~s}$	0.1	10.0	－
F1．33	Zero freq．brake current	$0.0 \sim 150.0 \%$＂rated current of motor	0.1	0.0	\times
F1．34	FWD／REV transition time	0．0～100．0s	0．15	0.0	－
F 1.35	FWD／REV switch mode	0 ：over zero freq．switch 1：over start freq．switch	1	0	x
F1．36	Standby deceleration time when emergency brake	0．1～3600．0s	0.15	1.0	－
P2 Group－Motor Parameters					
F 2.00	Motor type	0 ：AC asynchronous motor 1：FMm（reserved） Note 1：only closed－loop vector control is acceptable by synchronous machine at present Note 2：this parameter can not be initialized，please modify it manually．	1	0	＊
F 2.01	Motor＇s rated power	0．4～999．9kW		Depending on model	\times
F 2.02	Motor＇s rated freq．	$0.01 \mathrm{~Hz} \sim$ 【 F0．15 \maximum freq．	0．01Hz	50.00	\times
F 2.03	Motor＇s rated speed	－6－momary	14＊	Depending on model	\times
F 2.04	Motor＇s rated voltage	0～999V	1V	Depending on model	x
F 2.05	Motor＇s rated current	0．1～6553．5A	0．1A	Depending on model	\times
F 2.06	5tator resistance of asynchronous motor	0．001～20．000	－mond	Depending on model	\times
F 2.07	Rotor resistance of asynchronous motor	0．001～20．000	07000	Depending on model	\times
F 2.08	Stator and rotor inductance of asynchronous motor	0．1～6553．5mH	0.1 mH	Depending on model	\times
F 2.09	Stator and rotor mutual inductance of asynchronous motor	0．1～6553．5mH	0.1 mH	Depending on model	\times

F 2.10	No－load current of asynchronous motor	0．01～655．35A	0．01A	Depending on model	\times
$\begin{aligned} & \text { F } 2.11 \text { - } \\ & \text { F } 2.15 \end{aligned}$	Reserved	－	－	0	4
F 2.16	Motor tuning	O：no action 1：static tuning 2：no－load complete tuning 3：on－load complete tuning	1	0	x
F 2.17	pre－excitation time of asynchronous motor	$30.00 \sim 10.00 \mathrm{~s}$ $0.4 \sim 4.0 \mathrm{~kW}$ 0.05 s $5.5 \sim 30 \mathrm{~kW}$ 0.10 s $37 \sim 132 \mathrm{~kW}$ 0.30 s $160 \sim 630 \mathrm{KW}$ 0 PSom note： irvalid for VF control	0．01s	Depending on model	x

F3 Group－Reserved Parameters

F4 Group－Speed Loop，Torque and Flux Control Parameters					
F 4.00	Speed loop（ASR1） proportional gain	1080－4000	0.001	1.000	－
F 4.01	Speed loop integral time （ASR1）	6，00－12－00i	Digh	1400	－
F 4.02	ASR1 filter time constant	$0.000 \sim 0.100$ s	0 OH	DSod	－
F 4.03	Switch low point freq．	$\mathbf{0 . 0 0 H z} \sim$ 【F4．07】	0.01 Hz	5.00	－
F 4.04	Speed loop（ASR2） proportional gain	1500－4000	－1804	1.500	\bigcirc
F 4.05	Speed loop integral time	6400－5006	0．0015	D50	－
F 4.06	ASR2 filter time constant	$0.000 \sim 0.100 \mathrm{~s}$	0．0015	DPMo	－
F 4.07	Switch high point freq．	【F4．03】～【F0．16】 upper limit freq．	0.01 Hz	10.00	－
F 4.08	Vector control of positive slip compensation factor （electromotion state）	戒瞋～200．0\％＂rated slip frequency	0．1\％	10404	－
F 4.09	Vector controlof negative slip compensation factor （braking state） \quad ${ }^{2}$	$01 \pi \sim 200.0 \%^{*}$ rated slip frequency	0．1\％	10104	－
F 4.10	Speed and torque control	0：speed torque 2：valid conditionally（terminal switch）	1	0	\times
F 4.11	Speed and torque switching delay	0．01～1．00s	0．01s	0.05	\times
F 4.12	Torque command	0：keypad set 1：Al1 2：Al2 3：communication set	1	0	－

F 4.13	Torque set by keypad	460 divere	0．1\％	Din	－
F 4.14	Speed limit channel 1 of torque control mode folvint	$\begin{aligned} & \text { D. ippodiant } \\ & \text { 1: Al1 } \\ & \text { 2. AI } \end{aligned}$	1	0	\bigcirc
F 4.15	speed limit channel 1 of torque control mode （reverse）	0 ：keypad set 2 1：Al1 2：Al2	1	0	\bigcirc
F 4.16	Keypad limit speed 1	tith．	0．1\％	10004	－
F 4.17	Keypad limit speed 2		0．1\％	1010w	\bigcirc
＋4．14	Tonur the itre	65－100	0.5	01	6
P415	Tountinhen		043	古 4	0
F 4.20	Electromotion torque limit of vector mode	```G type: 0.0%-wowp%"nt+d current of motor 1"M贯 P type: 0.0% ~ 200.0%*rated umumpimetre twam```	0．1\％	Depending on model	－
F 4.21	braking torque int of vector mode		0．1\％	Depending on model	－
F 4.22	Torque detection action	0：frimitrit 1：keep running after over torque detected during constant speed 2：keep running after over torque detected during running 3：cut off output after over torque detected during constant speed 4：cut off output after over torque detected during running 5：keep running after torque shortage detected during constant speed 6：keep running after torque shortage detected during running 7：cut off output after torque shortage detected during constant speed 8：cut off output after torque shortage detected during phen	1	0	\times
F 4.23	Torque detection level	current of motor 190h P type： $0.0 \% \sim 200.0 \%{ }^{*}$ rated puntalyin the	0．1\％	Depending on model	x

F4．24	Torque detection time	$0.0 \sim 10.0 \mathrm{~s}$	0.1 s	0.0	\times
F4．25	Cut off freq．of static friction coefficient	$0.00 \sim 300.00 \mathrm{~Hz}$	0.01 Hz	10.00	0
F4．26	Static friction coefficient set	$0.0 \sim 200.0$	0.1	0.0	0
F4．27	Hold time of static friction coefficient	$000 \sim$ monnow	0.01 s	0.00	\times

F5 Group－VF Control firalime					
F 5.00	V／F curve set	0 ：linear curve 1：decreasing torque curve 1 （1．3 power） 2：decreasing torque curve 2（1．5 power） 3：decreasing torque curve 3（1．7 power） 4：square curve 5：user set V / F curve （determined by F5．01～F5．06）	1	0	x
F 5.01	V／F frequency F1	$0.00 \sim \mathrm{F2}$（frequency value）	0.01 Hz	12.50	\times
F 5.02	V／F voltage V1	$0.0 \sim \mathrm{~V} 2$（voltage value）	0．1\％	2156	\times
F 5.03	V／F frequency F 2	F1～F3（frequency value）	0．01Hz	25.00	\times
F 5.04	V／F voltage V2	V1～V3（voltage value）	0．1\％	40／mim	\times
F 5.05	V／F frequency F3	Freq．Value F2～【F2．02】 rated freq．of motor	0．01Hz	37.50	\times
F 5.06	V／F voltage V3	$\begin{aligned} & \hline \text { Voltage value V2~100.0 } \%^{*} \\ & \text { 【F2.04】 rated voltage of motor } \end{aligned}$	0．1\％	750	\times
F 5.07	Torque boost setting	$0.0 \sim 30.0 \%$＊rated voltage of motor 【F2．04】	0．1\％	Depending on model	\times
F 5.08	Torque boost cutoff point	$0.00 \sim$ rated freq．of motor	0．01Hz	4060	\times
F 5.09	V／F control slip frequency compensation	$0.0 \sim 200.0 \%$＊rated slip note：default as $\mathbf{1 0 0 . 0 \%}$ in advanced VF control mode	0．1\％	0．0\％	－
F5．10	V／F control slip compensation filtering coefficients	1～10	1	3	－
F5．11	V／F control torque compensation filtering coefficients	0～10	1	0	0
F5．12	5eparated type V／F control	0：VF half separated mode， voltage open－loop output 1：VF half separated mode， voltage closed－loop output 2：VF complete separated mode，voltage open－loop output 3：VF complete separated mode，voltage closed－loop output Note 1：when choose VF separated control，please dose the dead－time compensation	1	0	x

		funger Note 2：half separated concept is based on that during start－up the frequency and voltage of VFD remains the WVF relation， but get separated after the ruchliged en hatuncy			
F5．13	Voltage setting channel	0 ：digital setting 1：Al1 2：Al2	1	0	0
F5．14	voltage feed back method of voltage close－loop output	0：Al1 1：Al2 note：only valid for dosed loop output mode	1	0	\times
F5．15	Output voltage of digital setting	pp－7nops＂inded polyn d motor note：in open loop output mode， the maximum output voltage is 100.0% of rated voltage of regry	0．1\％	10044	0
F5．16	Drumprint Tetapencelose trumes	$0.0 \sim 5.0 \%$＂rated voltage of motor	0．1\％	2．0\％	\times
F5．17	VF wit mie voltage of half separation mode	0．－ motor 	0．1\％		\times
F5．18	wivion equand cycle of voltage itiose lespent	0．01～10．00s	0．01s	0.10	\times
F5．19	Voltage rising time	note：this parameter is only valid	0．1s	10.0	－
F5．20	Voltage declining time	for open loop output mode of 	0．1s	10.0	0
F5． 21	Voltage feedback disconnection treatment	the voltage of disconnection moment 1：alarm and keep running with decreased voltage of amplitude IImiting value 2：protection action and free至	1	0	\times
F5． 22	Dentityoublat voltage feedback fininnergi	$0.0 \sim 150 \mathrm{mb}$＇ratad voltage of motor	0．1\％	204	－
F5． 23	voltage feed back parmentar	$0.0 \sim 100.0 \mathrm{~s}$	0．1s	10.0	0

F5．24	Limit voltage of voltage feedback disconnection	$0.0 \sim 100.0 \%$＊rated voltage of motor note：this voltage represents the output voltage of VFD，and reasonable setting of this parameter could prevent machine damage resulting from voltage overshoot at disconnection moment．	0．1\％		o
F6 Group－Analog Quantity and Pulse Input and Output Parameters					
W凩	Al1 Input corresponding physical quantity	0 ：speed command（output freq．，$-100.0 \% \sim 100.0 \%$ ） 1：torque command（output torque，$-200.0 \% \sim 200.0 \%$ ） 2：voltage command（output voltage， $0.0 \% \sim 200.0 \%{ }^{\text {rated }}$ voltage of motor）	1	0	x
F6．01	Al1 input lower－limit	$0.00 \mathrm{~V} / 0.00 \mathrm{~mA} \sim$ $10.00 \mathrm{~V} / 20.00 \mathrm{~mA}$	0．01V	0.00	－
F6．02	Al1 lower limit corresponding physical quantity set	$-200.0 \% \sim 200.0 \%$ note：range is relevant to P 6.00	0．1\％	0．0\％	－
F6．03	Al1 input upper limit	$0.00 \mathrm{~V} / 0.00 \mathrm{~mA} \sim$ $10.00 \mathrm{~V} / 20.00 \mathrm{~mA}$	0.01 V	10.00	\bigcirc
F6．04	Al1 upper limit corresponding physical quantity setting	－200．0\％～200．0\％ note：range is relevant to P 6.00	0．1\％	Indim．	－
F6．05	Al1 input smoothing time	0．005～10．00S	0．01S	0.05	\bigcirc
Fars	Al2 input corresponding physical quantity	0：speed command（output freq．，$-100.0 \% \sim 100.0 \%$ ） 1：torque command（output torque，－200．0\％～200．0\％） 2：voltage command（output voltage， $0.0 \% \sim 200.0 \%$＊rated valtage of motor）	1	0	\times
F6．07	Al2 input lower limit	$0.00 \mathrm{~V} \sim 10.00 \mathrm{~V}$	0．01V	－6䀎	\bigcirc
䧉四	Al2 lower limit corresponding physical quantity setting	－200．0\％～200．0\％ note：range is relevant to P 6.00	0．1\％	0．0\％	\bigcirc
F6．09	Al2 input upper limit	$0.00 \mathrm{~V} \sim 10.00 \mathrm{~V}$	0.01 V	10.00	－
F6．10	Al2 upper limit corresponding physical quantity setting	－200．0\％～200．0\％ note：range is relevant to P 6.00	0．1\％	umin	－
F6．11	Al2 Input filtering time	0．005～10．005	0.015	0.05	\bigcirc
F6．12	Error limit of analog Input	$0.00 \mathrm{~V} \sim 10.00 \mathrm{~V}$	0.01 V	0.10	\bigcirc
F6．13	Threshold of zero freq． operation	Zero freq． $\mathrm{hysteresis} \sim 50.00 \mathrm{~Hz}$	0．01Hz	000	\bigcirc
F6．14	zero freq．hysteresis	0．00～zero freq．threshold value	0.01 Hz	090	\bigcirc

F6.15	External impulse input corresponding physical quantity	0: speed command (output freq., -100.0\%~100.0\%) 1: torque command (output torque, $-200.0 \% \sim 200.0 \%$)	1	0	x
F6.16	External impulse input lower limit	$0.00 \sim 50.00 \mathrm{KHz}$	0.01 KHz	0.00	0
F6.17	external impulse lower limit corresponding physical quantity set	$-200.0 \% \sim 200.0 \%$ note: range is relevant to P6.15	0.1\%	0.0\%	0
1518	external impulse input upper limit	0.00~50.00KHz	5610-4		-
F6.19	external impulse upper limit corresponding physical quantity set	$-200.0 \% \sim 200.0 \%$ note: range is relevant to P6.15	0.1\%	760]	0
4420	external impulse input filtering time	```0.005~10.00s 0: output frequency (before slip compensation) output frequency (after slip compensation) set frequency motor speed (estimated value) output current output voltage but voltage```	0.01s	0.0s	-
F6.21	AO1 multi-function analog output terminal		1	0	0
F6. 22	AO2 multi-function analog output terminal		1	4	0
F6. 23	DO multi-function impulse output terminal		1	11	0
		7: PID specified value 8: PID feedback value 9: Al1 10: Al2 11: input pulse freq. 12: torque current 13: flux current			
F6.24	Physical quantity correspond to AO1 output lower limit	-200.0\% $\sim 200.0 \%$	0.1\%	505	0
F6.25	AO1 output lower limit	0.00~10.00V	0.01V	0.00	0
F6. 26	Physical quantity correspond to AO1 ouput upper limit	-200.0\% ~ 200.0\%	0.1\%	100609	0
F6.27	AO1 output upper limit	0.00~10.00V	0.01 V	10.00	0
雨d5	Physical quantity correspond to AO2 output lower limit		0.1\%	50\%	0
F6.29	AO2 output lower limit	$0.00 \sim 10.00 \mathrm{~V}$	0.01V	0.00	-
F6.30	Physical quantity correspond to AOZ output upper limit	70.04-96040	0.1\%	100004	0
F6.31	AO2 output upper limit	$0.00 \sim 10.00 \mathrm{~V}$	0.01V	10.00	0
F6.32	Physical quanttly correspond to DO output lower limit	-200.0\% $\sim 200.0 \%$	0.1\%	Doter	0

F619	cospathe lowrinat	1506-590949	(a)	009	-
F6.34	Fiprictquatay correspond to DO colpurper int	-200.0\% $\sim 200.0 \%$	0.1\%	H0184	0
Fis		1050-5nothe	60tret.	S000	0
F7.00	Input X1 function (when F8.21 is non-zero, default as function NO.58)	0: control terminal hat forward nie (FWD) Fever fil (REV) 3: three-wire running control 4: forward jog control 5: reverse jog control 6: free shutdown control 7: hinili reset signal input(RST) 8: external fault normally-open input 9: external fault normally-close input 10: emergency stop function (brake with) 11: reserved 12: freq. increase 13: freq. decrease	1	1	\times
F7.01	Input X2 function (when F8. 21 is non-zero, detwla E function NO.59)	14: प户ponm timine foct zero clearing 15: multi-speed 1 16: multi-speed 2 17: multi-speed 3 18: multi-speed 4 19: ACC/DEC time TT1 20: ACC/DEC time TT2 21: run command channel 1 22: run command channel 2	1	2	\times
F7.02	Input $\times 3$ function (when F8.21 is non-zero, detell in function NO.60)	23: VFD ACC/DEC prohlbit 24: VFD operation prohibiting 25: run command switch to keypad 26: run command switch to terminal 27: run command switch to	1	4	\times
F7.03	Input X4 function (when F8.21 is non-zera, Bhell - function NO.61)	28: auxillary freq. zero clearing 29: freq. wivit A and $K * B$ switch 30: freq. what A and A+ $\mathrm{K}^{*} \mathrm{~B}$ switch 31: freq. merte A and A-K* B switch	1	7	x

F7.04	Input X5 function \{when FR. 21 is nom-mite, deftull s funclion NO.62)	32: reserved 33: PID control Input 34: PD control pause 35. start trarerse operation 36: pause traverse aperation 37: traverse ctatus reset 38. PLC control input 39: PLC pouse 40. PMC rext 41: clear the counter to дero	1	8	k
f7.05	Input XG function (hloh-speed Impulse input, when 58.21 is ron-zero, defatult as functian NO.63)	counter 43: timiag trigeting Input 44: timing dearing lnput 45, input external impulse frequency (only valid for XG) 45, thear the length information 47, input the sgral of length (only valdo for X 5) 48, switch speed and torque control 49: prohibit torque control 50\%55; reserved 56-57, reserved 58: start/stap	1	0	*
F7.06	Input 87 function	59: running allowed 60; interlocki 61: interiock? 62. interfockj 63. PFCstar/itop 64: A frequency switch B and ח \quad ก 65"99: reserved	1	45	*
F7.07	reserved			0	-
F7.08	Digital flitering times	$\begin{aligned} & 1 \sim 10 \quad \text { 1; } 2 \mathrm{MS} \text { unit of } \\ & \text { scanning time } \end{aligned}$	1	5	-
F7.09	Terminal function detection when power on	0: terminal operation command Invalid when pawer on 1: terminel operation command valld when power on	1	0	-

F. 10	Effective logir setting of Input terrininal\|X1~ x81	$0 \sim$ FFH 0 ts posititue bogic, i.e. terminal $\mathbf{x i}_{i}$ is enabled when it connects with commen terminal and disabled If $\begin{aligned} & \text { isconnected. }\end{aligned}$ 1 is negative logic, ie, temnal XI is disabled when it connects with common terminal and enatiled when discomnected.	1	00	*
F7.11	FWD/REV terminal control mode	0: two-wire control mode 1 1: two-wire control mode 2 2: three-wire control mode 1 3: tiree-wire controd mode 2	1	0	\times
F. 12	UP/DOWN terminal frequercy modifying rate	0.01~ $50.00 \mathrm{~Hz} / 5$	$0.01 \mathrm{Hz/S}$	1.00	0
F7.13	reserved	-	-	0	\bullet
F7.14	Y1 output delay time	0.0~100.0s	0.15	0.0	*
F. 15	Y2 output delary ime	0.0~100.0s	0.15	0.0	\times
F. 16	R1 outpurt delay time	0.0~100.0s	0.15	0.0	*
F. 17	RZ output dely time [reserved]	0.0~100.0s	0.15	0.0	*
F.18	Open collector output termanaly1	0: me output 1: WFD forward rumning 2: VFD reverse running 3: fault outpurt 4: freq/speed level detection 5/gral (FDT1; 5: freq/speed level detection	1	0	\times
F. 19	Open collector output terminal 42	signsl (FDT2) 6: Freq/ispeed arival stgnt\| (f (AR) 7: VFD mero-speed ruming B: upper limit arrival of coutput freq.	1	0	*
F. 20	Programinable relay R1 output	freq. 10: lower Ilmt amikal of presel freq. during running 11: pre-alarm signal of overload 12. conanter detection signal output 13: couner detection reset sigual butput 14: diflerer ready	1	9	*

F7．21	Programmable relay R2 output	programmable MS running 16：stage finished of pogrammable MS running 17：upper and lower limit of traverse freq． 18：current limiting action 19：stall over voltage 20：low voltage lock－up 21：dormancy state 22：VFD alarm signal（PID disconnection，RS485 communication failure，panel communication failure，EEPROM read－write failure，encoder disconnection，etc．） 23：Al1＞Al2 24：preset length arrival 25：preset operatlon time out 26：dynamic braking action 27：DC braking action 28：flux braking action 29：torque limiting 30：over torque signal 31：auxiliary motor 1 32：auxiliary motor 2	1	0	\times
		33：accumulated operation time out 34～49：segment of MS or simple PLC operation 50：running Indication signal 51：temperature arrival indiantas． 52～99：reserved			
F7．22	Logic setting of output terminal（Y1～Y2）	$0 \sim 3 H$ 0 ：positive logic，i．e．terminal yI is enabled when it connects with common terminal，and disabled if disconnected． 1：negative logic，i．e．terminal Yi is disabled when it connects with common terminal，and matill tiogenmen．	1	0	\times
F7．23	 		0．1\％	10000	－
F7．24	FDT1 detection method	0 ：speed set value 1：speed detected value	1	0	\bigcirc
F7． 25	FDT1 level		0.01 Hz	4070	－
F7． 26	Prid	0．0～100．0\％＊【F7．25】	0．1\％	2．0\％	－

F7．27	FDT2 detection method	0 ：speed set value 1：speed detected value	1	0	0
F7． 28	FDT2 level	$0.00 \mathrm{~Hz} \sim$ 【F0．16】 upper limit freq．	0．01Hz	25.00	－
F7．29	FDT2 lag	0．0～100．0\％＊【F7．28】	0．1\％	4．0\％	0
F7．30	Counting value arrival processing	0 ：stop counting，stop output 1：stop counting，resume output 2：cycle count，stop output 3：cycle count，resume output	1	3	\times
F7．31	Counting start condition	0：always count since power on 1：count in operation status， stop counting in stop status	1	1	\times
F7．32	Counter reset value	【F7．33】～65535	1	0	0
F7．33	Counter detection value	$0 \sim$ 【F7．32】	1	0	－
F7．34	time out processing	0 ：stop timing，stop output 1：stop timing，resume output 2：cycle timing，stop output 3：cycle timing，resume output	1	3	\times
F7．35	Timing start condition	O：timing starts since power on 1：timing starts in operation status，and stops in stop status	1	1	\times
F7．36	Timing setting	0～65535s	1s	0	0
F7．37	Y1 turn off delay time	0．0～100．0s	0．1s	0.0	x
F7．38	Y2 turn off delay time	$0.0 \sim 100.0 \mathrm{~s}$	0．1s	0.0	\times
F7．39	R1 turn off delay time	0．0～100．0s	0．1s	0.0	x
F7．40	R2 turn off delay time	0．0～100．0s	0．1s	0.0	\times

F8 Group－PID Control frem

明第	PID operation input mode	0 ：Hith 1：manually input via defined multi－function terminal	1	0	\times
－104	PID input channel	0 ：digital setting 1：Al1 2：Al2 3：pulse setting 4：1545 di wilino	1	0	0
F8． 02	Digital reference input setting	0．0～100．0\％	0．1\％	城而	0

F8．03	PID feed back channel	0：Al1 1：Al2 2： $\mathrm{Al} 1+\mathrm{Al} 2$ 3：Al1－Al 2 4：Mas \｛A11，Al2\} 5：M패 \｛Al1，Al2\} 6：pulse setting 7：Prinismmerierlan	1	0	0
PiP4	PID controller advanced setting	LED one＇s place：PID sign 0 ：positive 1：negative LED ten＇s place：proportion regulation（reserved） 0 ：integral regulation of constant proportion 1：integral regulation of auto changing proportion LED hundred＇s place：integral regulation 0 ：stop integral regulation when the frequency reaches the upper or lower limits 1：continue the integral regulation when the frequency reaches the upper or lower limits LED thousand＇s place：reserved	1	00	\times
F8．0S	Proportional gain KP	0．01～100．00	0.01	1.00	－
F8．06	Integral time Ti	0．01～10．00s	0．01s	0.10	－
－1］	Derivative time Td	$0.01 \sim 10.00 \mathrm{~s}$ 0．0：no derivation	0．01s	nos．	－
Fics	Sampling cycle T	$\begin{aligned} & 0.01 \sim 10.00 \mathrm{~s} \\ & 0.00: \text { auto } \end{aligned}$	0．01s	0.10	0
降畐	Error limit	0．0～100．0\％	0．1\％	0．0．4	0
F8．10	Close－loop preset freq．	0．00～upper limit freq．	0．01Hz	0.00	0
F8．11	Preset freq．hold time	0．0～3600．0s	0．1s	0.0	x
F8．12	Sleep mode	0：disabled 1：sleep when feedback pressure exceeding or lower than sleep threshold 2：sleep when feedback pressure and output frequency are stable	1	1	\times
F8．13	Stop menod of sleep mode	0 ：decelerate to stop 1：coast to stop	1.00	0	－
F8．14	Deviation limit of feedback when entering sleep state compared with set pressure	$0.0 \sim 20.0 \%$ Note：this parameter is only valid to the second sleep mode．	0．1\％	5．0\％	－

	Threshold value of sleeping	$0.0 \sim 200.0 \%$ Note：this threshold value is the percentage of given pressure， and it is only valld for the first sleep mode．	0．1\％	10004	o
限苼	Threshold value of awaking	$0.0 \sim 200.0 \%$ Note：this threshold value is the percentage of given pressure．	0．1\％	需品	－
F8．17	Delay time of sleep	0．0～3600．0s	0.15	100.0	\bigcirc
F8．18	Delay time of awaking	$0.0 \sim 3600.0 \mathrm{~s}$	0.15	5.0	\bigcirc
F8．19	Delay time of adding pump	$0.0 \sim 3600.0 \mathrm{~s}$	0.15	10.0	O
胸 3	Delay time of reducing pump	0．0～3600．0s	0．15	10.0	－
限24	Water supply enabling （F8．21－F8． 24 not supported by hardware）	0：d－anded 1：PFC enabled 2：SPFC enabled	1	0	x
F8．22	Delay time of terminal disconnect and connect	0．0～6000．0s	0．1s	0.1	0
F8． 23	Polling time	0．0～6000．0s	0．1h	－40	\bigcirc
1734	Lower limit freq．of reducing pump	$0.0 \sim 600.00 \mathrm{~Hz}$	Qubit	0100	－
F9 Group－MS and PLC Running，Twyrse antral Length Control					
F面	PLC running mode	0 ：stop after single cycle 1：retain value after single cycle 2：continuous cycle of limited Binu 3：continuous cycle	1	0	\times
F9．01	Input mode of PLC running	0 ：auto 1：manually input via defined mult－function terminal	1	0	x
F9．02	PLC running state saving after poweroff	0 ：not save 1：save the stage and frequency when poweroff	1	0	x
F9．03	PLC restart mode	0：restart from the first stage 1：start from the stage where the driver stops（fault） 2：start from the stage where the driver stops（fault）at the recorded frequency	1	0	x
F9．04	Limited times of continuous cycle	1～65535	1	1	0
F9．05	Unit of PLC running time	0：s 1：m	1	0	x
－101	MS frequency 0	－upper limit Freq．～upper limit Freq．	6粗	S． 00	－
F9．07	MS frequency 1	－upper limit Freq．～upper limit Freq．	0．01Hz	10 00	\bigcirc

F9．08	MS frequency 2	－upper limit Freq．～upper limit Freq．	0.01 Hz	15.00	0
F9，09	M5 frequency 3	－upper limitt Freq．\sim upper limit Freq．	0.01 Hz	20.00	－
F9．10	MS frequancy 4	－upper limit Freq．\sim upper limht Freq．	D．01Hz	25.00	0
F9． 11	MS frequency 5	－upper limft Frea．\neg upper lirnt Freq．	0．01Hz	30.00	\bigcirc
円． 12	M5 frequency 6	－upper limit Freq．\sim upper limht Freq．	0．01Hz	40.00	\bigcirc
F9．13	M5 frequency 7	－upper limit Freq．～upper limit Freq．	0.01 Hz	50.00	\bigcirc
円． 14	MS frequency 8	－upper limit Freq．－upper limit Freq．	0．01Hz	0.00	\bigcirc
F9．15	M5 frequency 9	－upper limit freq．－～upper limit Freq．	0.01 Hz	0.00	0
P9．15	M5 frequency 10	－upper limit Freq．\sim upper lirntt Freq．	0．01Hz	0，00	\bigcirc
F9．17	M5 frequency 11	－upper limit Freq．～upper limtt Freq．	0．01Hz	0.00	0
F9．18	MS frequency 12	\rightarrow upper limit Freq．\sim upper IImit Freq．	0．01Hz	0.00	\bigcirc
F9． 19	MS frequency 13	－upper limit Freq．\sim upper limit Freq．	0．01Hz	0.00	\bigcirc
F9． 20	MS frequency 14	－upper limit Freq．\sim upper limit Freq．	0．01Hz	0.00	\bigcirc
円． 21	M5 frequency 15	－upper limit Freq．～upper limit Freq．	0.01 Hz	0.00	－
B． 22	AcriDec time of stage 0	O－3	1	0	\bigcirc
F9．23	Run time of segment 0	0．0－653355 ${ }^{\text {（M）}}$	0．1S（M）	0.0	0
F6． 24	Acc／Dectime of stage 1	$0 \sim 3$	1	0	－
B． 25	Run time of stage 1	0．0－65535．5 Sm （	0．15（M）	0.0	\bigcirc
円． 26	AcriDec time of stage 2	0－3	1	0	\bigcirc
F9． 27	Run time of stage ？	$0.0 \sim 65335.5 \mathrm{~S}(\mathrm{M})$	0．15（M）	0.0	0
F9．28	Axf／Dec time of stage 3	0～3	1	0	0
F9．29	Kun ime of stage 3	0．0－65535．5s（M）	0．15（M）	0.0	0
F9．30	Act／Dec time of stage 4	D－3	1	0	\bigcirc
F9． 31	Run time of stage 4	0．0～ $65535.5 \mathrm{~S}(\mathrm{M})$	0．15（M）	0.0	0
F9． 32	Acr／Dec time of stage 5	$0 \sim 3$	1	0	\bigcirc
F9，33	Run time of stage 5		D．15（M）	0.0	\bigcirc
円3 34	Acc／Dec time of stage 6	$0 \sim 3$	1	0	\bigcirc
F9，35	Run Bime of stepe 5	0．0－65535．58（M）	0．15［M）	0.0	0
F9， 36	Ancidec time of stage 7	O－3	1	0	0
F9．97	Run time of stage 7	0．0－65535．5 S（M）	0．15（M）	0.0	0
F9．38	Ack／Dec time of stage B	［－3	1	0	\bigcirc
F9． 39	Run time of stage 8	0．0－65535．5 S（M）	0．15（M）	0.0	0
F9，40	Ace／Dec time of stage 9	（0）${ }^{\text {a }}$	1	0	0
F9．41	Run time of stage 9	0．0－65535．5 S（M）	0．15（M）	0.0	0
P9．42	Ace／Dectime of stage	0～3	1	0	0

	10				
F9，43	Run time of stage 10	0．0～65 $535.5 \mathrm{~S}(\mathrm{M})$	$0.15(\mathrm{M})$	0.0	\square
F9．44	Accfoce time of stage 11	0～3	1	0	－
F9．45	Run time of stage 11	0，0～65535．5 S（\＄）	$0.15(\mathrm{M})$	0.0	\bigcirc
F9．46	Acc／Dect time of stage 12	0－3	1	0	\bigcirc
¢．47	Runt time of stage 12	0．0～65535．5 S（M）	0.15 （M）	0.0	\bigcirc
F9．48	Accioloc time of stage 13	0～3	1	0	\square
F9，49	Run time of stage 13	0．0～65535．5 S（M）	$0.15(\mathrm{M})$	0.0	\square
F9．59	Acc／bec time of stage 14	0～3	1	0	\bigcirc
F9，51	Run time of stage 14	0，0～65535．5 S（M）	$0.15(\mathrm{M})$	0.0	\square
F9．S2	Accfoce time of stage 15	0－3	1	0	－
F9．53	Run time of stage 15	0．0～63535．5 5 （M）	$0.15(\mathrm{M})$	0.0	0
F9，54	Reserved	－	－	0	\bigcirc
F9．55	Truthe comitol	0：disabled 1：emabled	1	0	\times
F9．56	input method of traverse mode	0．auta 1：manualhy input via defined mult－furction terminal	1	0	\cdots
F9．57	Amplitude control	0；flxed ampltoude 1：varied amplitude	1	0	＊
F9．58	Restart method of trwerse mode	0：stan to the state before stop 1：restart whthout other requirement	1	0	＊
F9．SS	Sowe traverse state upon power fallure	0 ；sere 1．not save	1	0	＊
F9．60	Preset trinerse freq．	0．00Hz \sim upper limit freq．	0．01Hz	10.00	\bigcirc
F9．61	Preset towerge freq． hold time	0．0－3600．0s	0.15	0.0	\cdots
F9．62	Trawerse amplitude	0．0－100．0\％	0．1\％	0．0\％	\bigcirc
F9．63	Step freq．	0．0～50．0\％（ of ampliterde）	0．1\％	0．0\％	\bigcirc
F9．64	Trawerse rising time	0．1－3500．0s	0.15	5.0	\bigcirc
F9，6S	Truerse folling time	$0.1 \sim 3500.08$	0.15	5.0	－
F9．66	reserved	－	－	0	\checkmark
F9．67	Lengeth control	0．disabled 1：enabled	1	0	＊
F9．68	Preset length	0．000～ $5.5 .535\{\mathrm{KM}]$	0.001 KM	0.000	0
F9．69	Actual length	0．000～65．535 \｛ $\mathrm{KM} \mathbf{1}$ ）	0.001 KM	0.000	0
F9．70	Lengeth lactor	0．100－30．000	0.001	1.000	\bigcirc
F9．71	Length callibration	$0.001 \sim 1.000$	0.001	1000	0

150	Suhtumulnter		－5104	10.00	0
F9．73	find for mivilian \％	1～65535	1	1024	0
FA Group－Protective Parameters					
furo	Motor overload protection	中u druphes 1：eforimat trorat（electronic heat relay，with low speed compensation） 2：variable frequency motor （electronic heat relay，without 	1	1	\times
FA． 01	ingoratind 	20．0\％～120．0\％	0．1\％	10n酲	\times
Hest	Undervoltage protection	0 ： enabled（undervoltage is seen as fault）	1	0	\times
FA． 03	Undervoltage protection level	220V： $180 \sim 280 \mathrm{~V}$ 30 V 1006／ $330 \sim 480 \mathrm{~V}$ 350 V	1V	Depending on model	\times
FA． 04	Overvoltage limit level	$\begin{aligned} & \text { 220V: } 350 \sim 390 \mathrm{~N} \\ & \text { 1twivi } 600 \sim 780 \mathrm{~V} \end{aligned}$	1V	Depending on model	\times
FA． 05	Voltage limit factor in decelerating	$0 \sim 100$ 0 ：protection invalid of stall over 	1	Depending on model	\times
FA．06	Current limiting threshold（only valid for VF mode）		1\％	Depending on model	\times
FA． 07	Current limiting in the fleld weakening region	6 lindombrer 1：limited by conversion value of际新	1	0	\times
pure	Current limiting factor in accelerating	$0-16$ 0 ：acceleration current limiting is chable	1	Depending on model	\times
Inmi	Current limiting in constant speed running	0：deshat 1：mintid	1	1	\times
FA． 10	Off load detection time	0．15～60．0S	0.15	5.0	－
FA． 11		$0 \sim 100 \%{ }^{\star}$ VFD rated current 	1\％	4n	0
FA． 12	Overload pre－alarm level		1\％	Depending on model	－
FA． 13	Derrag miturn divitur	0．0～30．0s	0.15	10.0	\bigcirc
FA． 14	Bromiturp atectien Browber	$0.0^{\circ} \sim 90.0^{\circ} \mathrm{C}$	0．1＇C	$65.0{ }^{\circ} \mathrm{C}$	\times

FA， 15	Phase loss protection of Input and output	ib dinsted 1：disabled for input，enabled for output 2：enabled for input，disabled for output 1 mand	1	Depending on model	\times
FA． 16	Delay time of input plan lom irmath	$0.0 \sim 30.0 \mathrm{~s}$	0.15	1.0	－
FA． 17	output phase loss protam	$0 \% \sim 100 \%{ }^{\text {c }}$ VFD rated current	1\％	\％	x
FA． 18	Detection factor of output current imbalance	$1.00 \sim 10.00 \quad 1.00 ;$ detection bul whel Note：detection of output current imbalance and output phase loss share the same reference parameter FA． 17 and But	－	1.00	\times
M17	travers	－	－	0	$+$
FA． 20	PID feedback disconnection processing	1：alarm and maintain the operation at the frequency of disconnection Hernint 2：protection action and coast to stop 3：alarm and decelerate to sun－rowd cosemamady	1	0	\times
FA． 21	Fucsurt disconnection derntion lal	0．0～100．0\％	0．1\％	0.04	－
FA． 22	disconnection detentinn tea	$0.0 \sim 3600.05$	0.15	10.0	－
FA． 23	reserved	－	－	0	4
FA． 24	Action of RS485 communication error	stop 1：alarm and maintain the current operation 2：alarm and stop according to iteratrimese	1	1	\times
FA． 25	RS485 communication timeout detect	$0.1 \sim 100.0 \mathrm{~s}$ note：communication time out ynin	0．1s	5.0	－
FA． 26	Action of operation panel communication लाप्र	0：ppotation wotar mat contite stop 1：alarm and maintain the current operation 2：protection action and stop according to the preset stop	1	1	x

FA． 27	Conntiminnt communication ifenal downt	$0.0 \sim 100.0 \mathrm{~s}$	0.15	1.0	\bigcirc
㙏等	Action of EEFROM read－write error	0：monection ation wion mat if stop 1：alarm and maintain the corminiogtilaty	1	0	x
FA．29－FA． 35	reserved	－	－	0	\bullet
ism	Protocol	0．Motis 1：user－defined	1	0	＊
FB． 01	Local address	直定	1	1	\times
180］	Baud rate setting	 1： $1+6.5$ 2：wath 3：thatuer 4： 3 motors 14 14Hons	1	3	＊
［而	Data format	0：no party（ $\mathrm{N}, 8,1$ ）for RTU 1：ewm parity（ $\mathrm{E}, 8,1$ ）for RTU 2：odd parity（ $0,8,1$ ）for RTU 3：no parity（ $\mathrm{N}, 8,2$ ）for RTU 4：नलm parity $(E, 8,2)$ for RTU 5：odd parity（ $0,8,2$ ）for RTU ASCl｜mode is reserved at phawt	1	0	x
104	Response delay	0～200ms	1ms	5	x
1845	Transmission response	0：response for write operation 1：no response for write operation	1	0	＊
7n4	hath orrelmat	0．01～10．00	0.01	1.00	0
FC． 00	Dynamic braking	0 ： 1：always enabled 2：only enabled when decelerating	1	2	\times
FC． 01	Initial voltage of dynamic braking	220V： $340 \sim 380 \mathrm{~V}$ ingw $660 \sim 760 \mathrm{~V}$	1V	Depending on model	0
FC． 02	Hysteresis voltage of dynamic braking	220V： $10 \sim 100 \mathrm{~V}$ 5 V $380 \mathrm{~V}: 10 \sim 100 \mathrm{~V}$ 10 V	1V	Dependlng on model	6

FC． 03	nal｜in	10～100\％	IT	S07\％	－
FC． 04	Restart after power failure	 1：start at start frequency 2：start in speed tracking mode	1	0	\times
FC． 05	ponerblut	$0.0 \sim 60.0 \mathrm{~s}$	0.15	5.0	x
FC． 06	Auto reset times	$0 \sim 100$ the setting value of 100 means unlimited times	1	0	\times
ILS	Autarimintivil	01－4009	21	10.	\times
FC．08	Cooling fan control	```0: auto control natis always running when power on```	1	0	0
FC． 09	Password of operation limiting function	Note 1：the password will take into effect 3 minutes later after set successfully Note 2：this parameter cannot Enintolual．	1	0	0
FC． 10	Operation limiting function	0：tubind Note：this parameter cannot be Mritul	1	0	－
FC． 11	Limiting time	6－65ism Note：thls parameter cannot be inticien	1	0	x
FC． 12	of instantaneous power 		1V	Depending on Froled	\times
FC． 13	Freq．decreasing factor of instantaneous power failure	transient power fallure is disabled $1-1 p$	1	0	－
FC． 14	Droop control	$0.00 \sim 10.00 \mathrm{~Hz}$ 0.00 ：droop control function is 	0.01 Hz	W00	\times
FC． 15	peestrudely	0．1～5．0S	0.15	1.0	\times
FC． 16	Current amplitude limiting of rotating speed tracking	80\％$\sim \mathbf{2 0 0 \%}{ }^{*}$ VFD rated current	1\％	Depending on model	＊
FC． 17	Hend et roxt ni perd liehny	1～125	1	25	\times

FC． 18	WWM mode	LED one＇s place：PWM synthesize method 0 ：seven segments of full band 1：switch from 7 segment to five segments LED ten＇s place：FWM temperature correlation 0 ．Acpted 1：enabled LED hundred＇s place：FWh frequency correlation 0．divalled 1：low freq．adjustment，high Freq，adjustment 2：no adjustment for low freq．， high freq．adjustment 3：low freq．adjustment，no adjustment for high freq． LED thousand＇s place：Flactle iwMuretion 0 ：chated 1：enalbed	1	Depending on model	\times
FC． 19	AVR function	LED one＇s place：AVR function 0：南相相 1：always enabled 2：only disabled when decelerating LED ten＇s place：overmodulation 0 ：An that 1：withed LED hundred＇s place：dead－time compensation 0．trubled 1：pratlet LED thousand＇s place：harmonlc components optimizing （reserved） 0．In ithat 1：enabled	1	体立	\times
FC． 20	Oscillation suppressing initial freq．	$0.00 \sim 300.00 \mathrm{~Hz}$	0.01	Depending on model	0
FC． 21	Flux braking	0～100 0：disabled	1	0	\bigcirc
FC． 22	Energy saving control factor	0～100 0：turbled	1	0	－
FC． 23	MS priority	0 ：theuted 1：MS prior to F0．07 setting	1	0	－

FC． 24	Jog priority	0：thabled 1：the jog has the highest priority 	1	0	E
FC． 25	Special function	iPbort bre Hin ind onput whine 0：A02 enabled 1：Whalle LED ten＇s place：OC function （reserved） 1；enabled LED hundred＇s place：OU1 function（reserved） 0 ：disabled 1：enabled 	1		x
FC． 26	Oscillation suppression upper limit freq．	$0.00 \sim 300.00 \mathrm{~Hz}$	0.01	N000	－
FD Group－Reserved Preymitr					
FE Group－Panel Function Setting and Franter Maupment					
1400	LCD language option （only for LCD panel）	0 ：Chrint 1：English Di merrel	1	0	－
FE． 01	Key M－FUNC function	0：JOG（jog control） 1：FWD／REV switch 2：clear frequency set by $\mathbf{\Delta / \nabla}$ 3：switch between local operation and remote control（reserved） 4：ifinter	1	0	x
FEP9	Key STOP／RST function	0 ：ant effrsite os savei nase 1：effective to both panel and terminal control 2：effective to both panel and communication control it eftron rain inmel moder	1	3	－
F．04	$\begin{aligned} & \text { STOP + RUN emergency } \\ & \text { stop } \end{aligned}$	1：coast to stop	1	1	－
FE． 04	Dovelepp taput law	0．01～100．00	0.01	1.00	\bigcirc
FE． 05	Desdinhlotrichlod Printiond	$0.01 \sim 100.00$	0.01	1.00	－
Tise	Heniperthers	प而－10010	0.01	100	E
FE． 07	Emoder mpleth anotlemet	1～100	1	70	－
7．08	Honionlepanmour selection 1 in operation rimm	$0 \sim 57$	1	0	\bigcirc
71．07	Parimerppantun selection $\mathbf{2}$ in operation 	$0 \sim 57$	1	5	－

FE. 10	Morlatin parameters Hherton 1 in dopather	0~57	1	1	0
FE. 11	Uwhrine parameters 	$0 \sim 57$	1	12	-
FE. 12	Parameter display mode	 parameters display mode 0 : display all function parameters 1: only display parameters different from default value 2: only display parameters modified after power on of the last time (reserved) LED ten's place: monitoring parameters display mode 0 : only display main monitoring parameters 1: alternate display of main and auxiliary parameters (interval time 15) Elete interyd	1	40	0
FE. 13	Fantutur inflivion	1: restore to factory defaults (all user parameters except motor parameters) 2: restore to factory defaults (all -	1	0	\times
FE. 14	Write-protect	modified (some are not during operation) 1: only allow F0.12, F0.13 and F0.14 to be modified 2: only allow FE. 14 to be notilitil Note: these above limitations are invalid to this function code and 40	1	0	-
FE. 15	Parameter copy function	1: parameters upload to operation panel 2: all function code parameters download to the driver 3: download all function code parameters except motor parameters to the driver Note1: when selecting parameters to dowrload, the software will check if it is in accordance with the driver power specification; if not, all the parameters relevant to model will not be changed. Note2: only keyboard KB2 has copy function, copy with normal Agbort walremanfer	1	0	\times

F0 system management parameter
F0.00 \quad User password
$0 \sim 65535$ 0
User password setting function could prevent unauthorized person from checking and modifying the function parameters. To avoid misoperation, user password less than 10 is invalid.
When setting the user password, input a number not less than 10 , prin CIIT to confirm, and the password will take into effect after one mimute.
To modify the password, choose F0.00 function code, and press Bifll to enter password aurthentification status. After the authentification is successfully done, enter modifying status and input a new password, press IIfIl to confirm, and the modifying will be done successfully. New password will take into effect after 3 minutes.

$\square]_{\text {Note: }}$

Please keep the password carefully, and seek help from the manufacture once lost the password.

F0.01	Control software version	
	$1.00 \sim 99.99$	1.00
F0.02	Keypad software version	1.00
	$1,00 \sim 99.99$	
F0.03	VFD rated power	Depending on model
	$0.4 \sim 999.9 \mathrm{KW}$ (G/P)	

The above function codes iefit used for indicating the relevant information of VFD, which thet be noditel but only checked

F0.04	VFD type	
	$0 \sim 1$	0

0: G type (constant torque load type)
1: P type (\tan and water pump load type)
For our VFD products, G / P type 西 conbined, i.e. G type inverter mail be used as P type inverter with power of cne grade higher, but only if the function code is set with corresponding value.

F0.05	Control mode	
	$0 \sim 4$	Depending on model

0 : common V/F control
This control mode is used when there is a need to drive seme more motors with a single inverter and there is no access to the parameters of controlled motor. This control mode is most commonly used and applied in any circumstance where no strict requirement is needed for the motor control performance.
1: advanced V/F control
This control mode introduced flux closed loop control idea, and achieved a large improvement of torque response of motor control in full frequency range, torque output ability in low frequency, without the sensitivity to motor parameter in field-oriented vector control. It is especially suitable to situation where there is certain requirements for starting tarque (like drawbench, ball mill, etc.)
2: open loop current vector control (sensitive to motor parameter)
As a real current vector anintrol mode, it has both high torque cutput performance as flux control mode and flexible torque output. But considering its sensitivity to motor parameter, the operator had better activate the dynamic self-learning of motor parameters for a better effect.

3: reserved

4: separation type V/F control constant V/F relation. It can be used in areas like variable-frequency power source and EPS.
Note: factory default is 0 for above 55 KW , and 1 for under 55 KW .

This function code is used for choosing the physical channel for receiving operation commands like run and stop.

0 : keypad run command channel
Controlled with keys in keypad like RUN , $\mathrm{STIP} / \mathrm{RESET}$, M FUNC
1: terminal rum command channel
Controlled by muli-fumction terminals defined as FWD, REV, JOG forward, JOG reverse.
2: communication rum command chanmel
Controlled with communication method via upper computer.

\triangle Note

Even during running status, the rum command channel can be changed by modifying this function code set value. Please set carefully!

F0.07	Main freq. source A	
	0~9	0

0 : digital set 1 (Δ / ∇, encoder)

 Howht clud frequency increase; when DOWN and CDH terminal ill both closed, frequency decrease; when UP/COM Hurthil and DOM terminal are hoth ores or closed at the saving upon power down, the modified frequency value will be saved to F0.13 after power down. The modifying rate of running frequency by UP/DOWN terminal can be set by function code F7.12.

[I] Note:

No matim set by key Δ / ∇ or terminal UP/DOWN, the set value is added with a regulating variable based on F0.12 or F0.13, and the final output frequency ranges from the lower limit to the maximum output value. The regulating variable via terminal UP/DOWN can be cleared by choosing "UP/DOWN regulating variable of keypad can be cleared by choosing "clear key Δ / ∇ set of frequency" via key M FUNC.

2: digital set 3 (communication set)

Modify the set frequency via serial port frequency set command, for details check FB group communication parameter 3: AIl analog set ($0 \sim 10 \mathrm{~V} / 20 \mathrm{~mA}$)
The frequency seting is determined by analog voltage/current of AIl terminal, and the imput range DC $0 \sim 10 \mathrm{~V} / 20 \mathrm{~mA}$. The relevant setting is in $\mathrm{F} 6.00 \sim \mathrm{~F} 6.05$.
4: AD2 analog set ($0 \sim 10 \mathrm{~V}$)
Frequency setting is determined by analog voltage/current of AD2 terminal, input ranges DC $0 \sim 10 \mathrm{~V}$. The relevant setting is in F6.06~F6.11.
5: impulse set
Frequency setting is determine by terminal impulse frequency (only input via X6, see F7.05). Input impulse signal specification: high level range $15 \sim 30 \mathrm{~V}$; frequency range $0 \sim 50 \mathrm{kHz}$. The relevant setting is in $\mathrm{F} 6.15 \sim \mathrm{~F} 6.20$.
6: simple PLC set
It needs to set function code F9.00~F9.05 to select this mode. Function code F9.00~F9.21 are used to determine the running frequency of each PLC section, and F9.22~F9.53 are used to the increase/decrease time and nuning time of each section. 7: multispeed nmning setting
The VFD runs in multispeed mode in this frequency setting mode. Set the F7 group " X terminal as multispeed" and F9 group "multispeed frequency" function code to determine the correspondenec of specified section number and frequency. 8: PD control seting
The VFD runs in process PID control mode in this frequency setting mode. Fhection asdes F8 group are needed to be set such as "process PD parameter", analog given and impulse given. The running frequency of VFD is the value after rD taking effect. For details check F8 group function description.
9: panel potentiometer setting
Operate the potentiometer on keyboard to adjust running frequency, and regulating range is 0 -max. output frequency【F0.15】.

0 : digital set 1(keyped $\boldsymbol{\Delta / \nabla}$, encoder)
1: digital set 2 (UP/DOWN terminal adjustment)
2: digital set 3 (communication setting)
3: AI1 analog set $(0 \sim 10 \mathrm{~V} / 20 \mathrm{~mA})$
4: AD2 analog set ($0 \sim 10 \mathrm{~V}$)
5: impulse set ($0 \sim 50 \mathrm{KHZ}$
6: simple P L C setting
7: multispeed running setting
8: PD control setting
9: panel potentiometer setting
9: panel potentiometer setting Auxiliary frequency specified channel has the same meaning of each item as principle frequency channel, for details check Auxiliary frequenc.

F0.09	frequency source combinational algorithm	
	$0 \sim 8$	0

0 : principle frequency source A
$1: \mathrm{A}+\mathrm{K}^{*} \mathrm{~B}$
Principle frequency A, auxiliary frequency B multiplied by weight coefficient K, the tem of the above two values mitt the final specified value of VFD frequency.
2: $\mathrm{A}-\mathrm{K}^{*} \mathrm{~B}$
Principle frequency A minus auxiliary frequency B multiplied by weight coefficient K, the result is the final specified value of VFD frequency.
3: Al^{-4}
Pritithe irpermp M auxiliary frequency B multiplied by weight coefficient K, the absolute value of their difference is the

 Hpodesi what YFo laperty
GHAKNH
Pripople Iacurty A auxiliary frequency B multiplied by weight ienticlen K, the lower value of these two is the Een pootred nolut is wo forpory
Rumith tivainu E-
This function is used together with number 29 item of F 7 group parameter $\mathrm{X} 1 \sim \mathrm{X} 8$. When $\mathrm{F} 0.09=6$, and X terminal function is 29 , the X inmint is valid, frequency given equrse switch from A to $K^{*} B$; if X terminal is invalid, the frequency witer returns to A .
7: switch between A and $\left(\mathrm{A}+\mathrm{K}^{*} \mathrm{~B}\right)$
This function is used together with number 30 item of $F 7$ group parameter X1~X8. When $F 0.09=7$, and X terminal function is 30 , the X terminal is valid, frequency given putim switch from A to ($\mathrm{A}+\mathrm{K}^{*} \mathrm{~B}$); if X terminal is invalid, the frequency source returns to A.
8: switch between A and ($\mathrm{A}-\mathrm{K}^{*} \mathrm{~B}$)
This function is used together with number 31 item of F 7 group parameter $\mathrm{X} 1 \sim \mathrm{X8}$. When $\mathrm{F} 0.09=8$, and X terminal is $31, \mathrm{X}$ terminal is valid, frequency given source switch from A to (A-K*B); if X terminal is invalid, the frequency source returns to A.
\triangle Notice:
The given value of frequency is still restricted by start frequency and higher and lower limit frequency, and being positive or negative determines the running direction of VFD.
\mathbf{K} is the weight coefficient of auxiliary frequency, for details check F 0.14 function code description.

F0.10	Digital freq. set 1 control	
	$000 \sim 111$	000

LED units digit: power down save
0 : save
Once power on, the keypad and terminal frequency increment will be initialized to the value saved in EEPROM when power down last time
1: not save

Once power on，the keypad and terminal frequency increment will be initialized to 0 ．
LED tens digit：keep when stop
0 ：keep when stop
When the VFD stops rmaing，the frequency set value stays the last modified value．
1：not keep
When the VFD stops rumning，the set frequency returns to F0．12
LED hundreds digit： $\boldsymbol{\Delta} / \boldsymbol{\nabla}$ UP／DOWN frequency adjustment
0 ：invalid
1 ：valid
When valid，operating with key Δ / ∇ ， 4 UPI frequency．
F0．11 \quad Digital frequency set 2 control

F0．11	$000 \sim 111$
LED units digit：power down save	

0 ：save
Once power on，the keypad and terminal frequency increment will be initialized to the value saved in EEPROM when power down last time．
1：not save
Once power on，the keypad and terminal frequency increment will be initialized to 0 ．
LED tens digit：keep when stop
0 ：keep when stop
When the VFD stops rumning the frequency set value stays the last modified value．
1：not keep
When the VFD stops rumning，the set frequency returns to F0．12．
LED hundreds digit： $\boldsymbol{\Delta / \nabla}$ UP／DOWN frequency adjustment
0 ：invalid
1 ：valid
When valid，operating with key $\Delta / \mathbf{}$ ，UP／DOWN achieve the positive or negative adjustment of the frequency．

When frequency channel is defined as digital given 1 （principle and auxiliary frequency marie are both 0 ），this function parameter is initial setting frequency given by keypad digital frequency．

F0．13 Frequency source digital setting 2

When frequency channel is defined as digital given 2 （principle and auxiliary frequency prowe $\frac{10}{}$ both 1 ），this function parameter is initial setting frequency given by VFD terminal．

F0．14	Auxiliary frequency source weight coefficient K setting	
	$0.01 \sim 10.00$	
K is the weight coefficient of auxiliary frequency source，valid when F0．09 is $1 \sim 8$.		

0.16 Upper limit freq．

$【 F 0.17 】 \sim 【 F 0.15 】$	50.00

F0．17 LOOHz～
0.00

The maximum output frequency is highest allowed frequency for output，and the reference of acc／dec．time setting ain $f_{m a x}$ showed in the following figure；basic running frequency is the minimum frequency when output highest voltage，usually the
rated frequency of moter，as f_{b} showed in the following figure；the maximum output voltage $V_{\text {mar }}$ is the output voltage when output basic rumning frequency，usually rated voltage of the motor，as $V_{\max }$ showed in the following figure；$f_{\mathrm{B}}, \mathrm{f}_{\mathrm{L}}$ are defined as upper limit frequency and lower limit frequency separately，as showed in figure F0－1：

Oupt Whtyri

1．Notice：

1．The maximum output frequency，upper limit frequency and lower limit frequency should be set cautiously according to nameplate parameter and running condition of controlled motor，or there would be damage to the equipment
2．Upper limit frequency has valid restriction is to jog running，while lower limit frequency has no restriction to jog running．
3．Apart from upper limit frequency and lower limit frequency，the output frequency of running VFD is also restricted by
parameters like start frequency，stop DC braking start frequency，hopping frequency．
4．The maximum output frequency，upper limit frequency and lower limit frequency have relations as showed in figure F0－1， please notice the numerical value order when setting．
5．Upper limit and lower linit of frequency aniz used to restrict actual output frequency value of motor．If the set value is higher than upper limit，it rums in upper limit frequency；if the set value is lower than the lower limit，it runs in lower limit frequency（the running condition when set frequency lower than lower limit is also relevant to function code F1．31 setting）； if set frequency is lower than start frequency，it starts in zero frequency．

F0．18	Frequency output mode	
	$0 \sim 1$	0
0 ：low frequency mode（ $0.00-300.00 \mathrm{~Hz}$ ） 1 ：high frequency mode $(0.0-3000.0 \mathrm{~Hz})$ High frequency mode is only valid for V / F control．		
F0．19	Accelerating time 1	
	0．1～3600．0S	Depending on model
F0． 20	Decelerating time 1	
	0．1～3600．0S	Depend on model

Accelerating time is the time for VFD to accelerate from zaro frequency to the maximum output frequency，as t showed in figure F0－2．Decelerating time is the time for VFD to decelerate from maximum output frequency to frequency，iti 12 showed in figure F0－2．
There are 4 groups of acc／dec．time parameters for CRwa series VFD，the other 3 groups are intledil in function code F1．13～F1．18．The factory definh of acc．／dec．time is \＆hrinal by VFD type．For other time groups，please choose by multi－function terminal（refer to F7．00－F7．07 function code）．Acc．／Dec．time of jogging run is defined in F1．22 and F1．23．

0 : forward run

In this mode, the actual output phase sequence is the same with system default. Key KUN and FWD terminal are both for forward control.
1: reverse run
In this mode, the entail output phase sequence is opposite to the system default Key RUN and FWD terminal are both for reverse control.
2: reverse run furbidden in any condition loss.
[】Notice:
This function code is valid for the direction control of all the run command channel.

F0.22	Carrier frequency setting		
	$1.0 \sim 16.0 \mathrm{KHz}$	Depending on model	
$0.4 \sim 4.0 \mathrm{KW}$	6.0 KHz	$1.0 \sim 16.0 \mathrm{KHz}$	
$5.5 \sim 30 \mathrm{KW}$	4.5 KHz	$1.0 \sim 16.0 \mathrm{KHz}$	
$37 \sim 132 \mathrm{KW}$	3.0 KHz	$1.0 \sim 10.0 \mathrm{KHz}$	
$160 \sim 630 \mathrm{KW}$	1.8 KHz	$1.0 \sim 5.0 \mathrm{KHz}$	

This function code is used to set carrier frequency of PWM wave from VFD output. Carrier frequency will affect the noise when motor rumning, raise the carrier frequency properly when there is demand for quiet running Meanwhile, raising the carrier frequency will increase heat production and electromagnetic interference from the VFD.
When carrier frequency exceeds factory default value, the VFD needs to be used with derating. Normally 5\% derating of VFD current for every 1 kHz increasing of carrier frequency.

\triangle Notice:

1: Select different carrier frequency method via fumction code F0.22.

F1 Basic Running Paramete

\[

\]

0: start at start frequency

Start with start frequency (F1.01) and its corresponding retention time (F1.02) that has been set
1: DC braking and start at start frequency
DC brake (F1.03, F1.04) first, then start in method 0 .
2: start with speed tracking
When power on after power off, if it meets the starting condition, after a period of time defied by FC. 15, the VFD will start automatically in speed tracking method.

F1.01	Start frequency			1.00
	$0.00 \sim 50.00 \mathrm{~Hz}$			
	Start frequency hold time	0.0		
	$0.0 \sim 10.0 \mathrm{~s}$			

Start frequency is the initial frequency when the VFD starts, is showed in the following figure. For some system with relatively big starting torque, a reasonably set start frequency can solve effectively the hard starting problem. The retention time of start frequency is the time VFD stays in the start frequency value during starting stage, as t 1 showed in the following figure.

[] Notice

1.Start frequency is not effective by low limit frequency. Jog frequency is not effective by lower limit frequency but is restricted by start frequency.
2. When F0.18=1 (high frequency mode), start frequency has a upper limit of 500.0 Hz .

F1.03	DC brake current at startup	
	$0.0 \sim 150.0 \%{ }^{\text {r rated current of motor }}$	0.0%
	DC brae time at startup	0.0
	$0.0 \sim 100.0 \mathrm{~s}$	0

The setting value of start DC brake current is the percentage relative to rated cutput current When start DC brake time is 0.0 s, there would be no DC brake process.

The output frequency increase or decrease in a constant slope, as showed in the following figure.
1: S curve Acc./Dec. mode
The output frequency increase or decrease in S type curve along with time. During the accelerating start and speed reaching period, and decrease start and decreasing reaching period, set the speed as S curve. Thus the inereasing and decreasing action become smooth and the impact to load is decreased. The S curve Acc./Dec. is suitable for carry or deliver the start and stop of load, like elevator, conveyor, etc. As showed in the following figure: $t 1$ is accelerating time, 12 is decreasing time, is is time of S curve initial segment, te is time of S curve end segment, $F 1.06=t s / t 1, F 1.07=t e / t 2$.
Owfut Fraq.

Fig. F1-3 Straight Line and $\stackrel{t 2}{\mathrm{~S}}$ Curve of Acc/Dec.

F1.06	Time ratio of initial segment in S curve		
	$10.0 \sim 50.0 \%$	20.0%	
F1.07	Time ratio of end segment in S curve		
	$10.0 \sim 50.0 \%$	20.0%	

Details described in S curve Acc./Dec. item of F1.05.
$3 \quad 0 \sim 1$

4tarominy

1 ：free stop
Upon receiving the stop command，the VFD stops immediately，and the load stops according to mechanical inertia

F1．09	Frequency threshold of DC brake		
	$0.00 \sim$ 【F0．16】 upper limit freq．	0.00	
	DC brake delay time		
	$0.0 \sim 100.0$ s	0.0	
F1．11	DC brake current	0.0%	
	$0.0 \sim 150.0 \%$ \％rated current of motor		
	DC brake time at stop		
	$0.0: D C$ $0.1 \sim 100.0 s$	0.0	

The setting value of stop DC brake current is the percentage relative to rated current value of VFD．When stop brake time is 0.0 s，there would be no DC brake proces

Fig．F1－4 Stop DC Braking

F1．13	Accelerating time 2	
	0．1～3600．0	Depending on model
F1．14	Decelerating time 2	
	0．1～3600．0	Depending on model
F1．15	Accelerating time 3	
	0．1～3600．0	Depending on model
F1．16	Decelerating time 3	
	0．1～3600．0	Depending on model
F1．17	Accelerating time 4	
	$0.1 \sim 3600.0$	Depending on model

F1．18
Decelerating time 4
$0.1 \sim 3600.0$
Dependin
There are four kinds of Acc／Dec time to be defined，make different combination of control terminals to choose acc／dec time 1～4 during VFD running，check F7．00－F7．07 for definition of acc／dec time terminal function．

［D］Notice：

Acc／Dec time 1 is defined in F0．19 and F0．20．

F1．19	Acc／Dec time unit	
	$0 \sim 2$	0

0 ：second
1：minute
2：0．1s
This function code defines dimension of Acc／Dec time

F1．20	Frequency setting of forward jog operation	
	0．00～【F0．16】 upper limit freq．	5.00
F1． 21	Frequency setting of reverse jog operation	
	$0.00 \sim$ 【F0．16】 upper limit freq．	5.00
F1．22	Jog Acc time	
	0．1～3600．0s	Depending on model
F1．23	Jog Dec time	
	0．1～3600．0s	Depending on model
F1．24	jog interval time	
	0．1～100．0s	0.1

F1．20－F1．24 dethate relevant parameters of jog rumning．As twot in figure F1－5，t1 and t3 ate accelerating time and decelerating time respectively of actual running， t 2 is jog time；$t 4$ is jog interval time（ F 1.24 ）；f1 is forward jog running frequency（F1．20）； f 2 is reverse jog rumning frequency（F1．21）．The jog accelerating time of actual running $t 1$ is determined by the following formula：
$\mathrm{t}=\mathrm{F} 1.20^{*} \mathrm{~F} 1.22 / \mathrm{F} 0.15$
The jog decelerating time of actual running 3 is defined as follows：
$\mathrm{t} 3=\mathrm{F} 1.21^{*} \mathrm{~F} 1.23 / \mathrm{F} 0.15$
F0．15 is the maximum output frequency

Fig．F1－5 Jog Run

F1．25	Hopping freq．1			0.00
	$0.00 \sim$ upper limit freq．			
	Hopping frequency 1 range	0.00		
	$0.00 \sim$ upper limit freq．			
F1．27	Hopping freq．2	0.00		
	$0.00 \sim$ upper limit freq．			
F1．28	Hopping freq．2 2range	0.00		
	$0.00 \sim$ upper limit freq．			

F1.29	Hopping freq. 3			0.00
	$0.00 \sim$ upper limit freq.			
	Hopping freq. 3 range	0.00		
	$0.00 \sim$ upper limit freq.			

These above function codes ent used to keep the output frequency of VFD away from mopatere frequency of mechanical load. The set frequency of VFD can be specified in a jumping mode around some frequency point as showed in the following figure, which means the VFD frequency will lime stay in hopping frequency range, but the decelerating process will pass this range.

F1.31	Action when set freq. is lower than lower limit freq.	
	$0 \sim 2$	0

0 : run at lower limit frequency
VFD runs at lower limit frequency when set frequency is lower than lower limit frequency setting value (FO .17).
1: run at zero frequency after delay time
When set frequency is lower than lower limit (F0.17), after delay time (F1.32), the VFD will run at zero frequency. 2: stop running after delay time
When set frequency is lower than lower limit (F0.17), after delay time (F1.32), the VFD will stop running.

F1.32	Delay time of stopping when frequency is lower than lower limit	
	$0.0 \sim 3600.0 \mathrm{~s}$	10.0

For details check F1.31 parameter description.
F1.33
zero frequency brake carrent
$0.0 \sim 150.0 \%$
0.0

This parameter is the percentage of rated current of motor.

F1.34	FWD/REV transition time
	$0.0 \sim 100$ Os

The waiting time VFD transit from forward running to reverse running or the other way around is as $t 1$ showed in the following figure. It is also related to F 1.35 setting.

Fig. F1-7 FWD/REV run dead band time

F1.35	FWD/REV switch mode	
	$0 \sim 1$	0

0: over zero frequency switch
1: over start frequency switch
F1.36 \quad emergency stop standby deceleration time $0.1 \sim 3600.0 \mathrm{~S}$ 1.0

For details check NO.10 item fumction description of discrete input terminal (F7.00-F7.07).
P2 Auriliary Run Parameter

F2.00	motor type	
	$0 \sim 1$	0

0: AC asynchronous motor
1: PMSM (permanent magnet synchronous motor) (reserved) Asynchronous motor only accepts closed loop vector control at present.

F2.01	Motor's rated power	
	$0.4 \sim 999.9 \mathrm{KW}$	Depending on model
F2.02	Motor's rated frequency	
	$0.01 \mathrm{~Hz} \sim$ 【F0.15】 max. output freq.	50.00
F2.03	Motor's rated speed	
	$0 \sim 60000 \mathrm{RPM}$	Depending on model
F2.04	Motor's rated voltage	
	0~999V	Depending on model
F2.05	Motor's rated current	
	$0.1 \sim 6553.5 \mathrm{~A}$	Depending on model

\triangle Notice:
These above function codes must be set according to motor nameplate parameter. And please deploy the corresponding motor according the the VFD power, or the control performance of VFD will decrease if the motor power differs too much from VFD power.

F2.06		
	$0.001 \sim 20.000 \Omega$	Bopro4 man mod
F2.07		
	0.001~20.000	Dovorna cond
F2.08	Stator/rotor inductance of asynchronous motor	
	$0.1 \sim 6553.5 \mathrm{mH}$	1hyindel
F2.09	Stator/rotor mutual inductance of asynchronous motor	
	$0.1 \sim 6553.5 \mathrm{mH}$	Depmidion
F2.10		
	0.01~655.35A	Dramixy co oubㅏㄴ

These above motor parameters have specific implications as showed in figure F2-1.

Fig．F2－1 Steady State Equivalent Circuit of Asynchronous Motor
Fig．F2－1 parameters R1，X11，R2，X21，Xm，I0 represent stator resistance，stator leakage inductive reactance，mutual inductive resistance，no－load current．
inductive resistance，no－load current．
If there is tuning for the motor，the set value of $\mathrm{F} 2.06 \sim \mathrm{~F} 2.10$ will be updated after tuning．
After modifying the rated power F2．01 of asynchronous motor，F2．03－F2．10 parameters will be updated with default parameters of asynchronous motor with corresponding power（F2．02 is rated frequency of motor，not included in the default parameter range of asynchronous motor，and need to be set according to nameplate）

F2．11	Stator resistance of synchronous motor（reserved）	
	$0.001 \sim 20.000 \Omega$	Depending on model
F2．12	D－axis inductance of synchronous motor（reserved）	
	$0.1 \sim 6553.5 \mathrm{mH}$	Depending on model
F2．13	Q－axis inductance of synchronous motor（reserved）	
	$0.1 \sim 6553.5 \mathrm{mH}$	Depending on nodel
F2． 14	Back－EMF constant of synchronous motor（reserved）	
	1～1000V／1000rpm	150
F2．15	Identification current of synchronous motor（reserved）	
	$0 \% \sim 30 \%$ rated current of motor	10\％
F2．16	Motor tuning	
	0～3	0

1．no action
Parameter measurement mode when motor stays in static state．This mode is suitable for condition where motor can＇t be apart from load．
2：complete tuning
A complete parameters measurement of motor．Choose this mode for best when motor can be apart from load．

Noticer

1：when set F 2.16 as 2，if over courrent or tuning fault occurs during tuning，check if there is phase loss and whether the machine type matches；
2：when set F 2.16 as 2，free motor shaft from load during complete tuming to prevent motor from complete tuning with load；
3：insure the motor staying at stopped state before activating motor parameter tuning，or it won＇t process normally，
4：in some condition（like that motor can＇t be detached from load）that complete tuming can＇t be conducted conveniently or mo high requirement is asked for the motor control performance，static tuning can be used：
5：if tuning can＇t be conducted，users can input motor nameplate parameters（ $\mathrm{F} 2.01-\mathrm{F} 2.14$ ）if they are acquired precisely， and the VFD can still demonstrate a high performance．If tuning fails，protection action will be activated and $\mathrm{E}-21$ displayed．

F2．17

Pre－excitation time of asynchronous motor		
$0.00 \sim 10.00$ s		
$0.4 \sim 4.0 \mathrm{KW}$	0.05 s	
$5.5 \sim 30 \mathrm{KW}$	0.10 s	Depending
$37 \sim 132 \mathrm{KW}$	0.30 s	on model
$160 \sim 630 \mathrm{KW}$	0.50 s	
Notice：this parameter is not valid for VF		
control		

F3．00	Zero－servo Parameter	
	PG pulses per revolution（reserved）	
	1～9999	1024
F3．01	Motor and encoder speed ratio（reserved）	
	$0.001 \sim 65.535$	1.000
F3．02	PG rotation direction（reserved）	
	$0 \sim 1$	0
F3． 03	PG signal filtering time（reserved）	
	0．00～10．00s	0.10
F3．04	PG disconnection detection time（reserved）	
	0．1～10．0s	2.0
F3．05	PG disconnection action（reserved）	
	0～1	0
F3．06	Zero－speed detection value（reserved）	
	0.0 （forbid discomnection protection） $0.1 \sim 999.9 \mathrm{pm}$	0.0
F3．07	zero－servo control function（reserved）	
	$0 \sim 2$	0
F3．08	zero－servo position loop proportional gain（reserved）	
	$0.000 \sim 6.000$	2.000

F4 Speed loop，Torque and Flux Control Parameter		
F4．00	Speed loop（ASR1）ratio gain	
	$0.000 \sim 6.000$	1.0000
F4．01	Speed loop（ASR1）integral time	
	$0.000 \sim 32.000 \mathrm{~s}$	1.000
F4．02	ASR1 filter time constant	
	$0.000 \sim 0.100$ s	0.000
F4．03	Switch low point frequency	
	$0.00 \mathrm{~Hz} \sim$［ F4．07】	5.00
F4．04	Speed loap（ASR2）proportional gain	
	0～6．000	1.500
F4．05	Speed loop（ASR2）integral time	
	0．00～32．000s	0.500
F4．06	ASR2 filer time constant	
	$0.000 \sim 0.100$ s	0.000
F4．07	Switch high point frequency	
	【F4．03】～【F0．16】 upper limit freq．	10.00

$$
\text { Function codes } \mathrm{F} 4.00 \mathrm{-} 4.07 \text { are valid in no PG vector control mode. }
$$

In vector control mode，change speed response character by setting proportional gain P and integral time I of speed regulator
1．Speod regulator（ASR）has structure as showed in figure $\mathrm{F} 4-1$ ．KP is proportional gain P ，Π is integral time I ．

Fig．F4－1 Speed Regulator

condition）

$50.0 \% \sim 200.0 \%{ }^{*}$ rated slip freq．	100.0%

F4．09	Vector control negative slip compensation factor（braking state）		
	$\mathbf{5 0 . 0 \%} \sim \mathbf{2 0 0 . 0 \%} \%$ rated slip freq．	100.0%	

In vector control mode，these above function codes iner used to adjust steady－speed precision of motor．When motor is overload and the speed is low，increase the parameter，otherwise decrease the parameter．
Positive slip compensation factor works for the speed when motor slip ratio is positive，and negative slip compensation factor works for the speed when motor slip ration is negative．

F4．10 | | speed and torque control selection |
| :--- | :--- |
| | $0 \sim 2$ |

0 ：speed control
Speed control when without PG current vector control．
1：torque control
Torque control when without PG current vector control，the relevant parameter setting is in $\mathrm{F} 4.12 \sim \mathrm{~F} 4.24$ ．
2：valid in condition（terminal switch）
The controlled object when without PG current vector control is controlled by discrete input terminal defined as speed and torque control switching．Refer to NO． 48 item of F7 group discrete imput terminal function description．

4．11 speed and torque switching delay

This function defines the delay time switching from speed control to torque control or the other way around

F4．12	Torque command	
	$0 \sim 3$	0

This function code is used to set refirense input method of torque control．
0 ：keypad set
Torque command is given by keypad number．Set value is introduced in F4．13
1：AI1
Torque command is set by analog input AIl．The positive or negative value of AI1 input correspond to torque command value of farward or reverse direction．

When using this function，users should set physical quantity of AI1 input as torque command，and also AIl setting corresponding curve and AI1 input filtering time．Refer to function code F6．00 \sim F6．05 for introduction．
2：AD2
Torque command is set by analog input AI2．The positive or negative value of AI2 input correspond to torque command value of forward or reverse direction．

When using this function，users should set physical quantity of AR imput as torque command，and also AR setting corresponding curve and AD 2 input filtering time．Refer to function code $\mathrm{F} 6.06 \sim \mathrm{~F} 6.11$ for introduction．
3：RS485 communication
Torque command is given by RS485 communication．
F4．13 \quad Torque set by keypad

F4．13 | | $-200.0 \% \sim 200.0 \% *$ | |
| :--- | :--- | :--- |
| | rated current of motor | 0.0% |

This function code corresponds to torque setting value when torque command is set to given by keypad number．

F4．14	Speed limit channel 1 of torque control mode（forward）	
	$0 \sim 2$	0

This function code is used to set forward speed limit chamnel of torque control
0 ：keypad number setting 1
See F4．16 setting．
1：AIl
Forward speed limit channel is given by AI1 in torque control See function code F6．00－F6．05．
2：AD2
Forward speed limit channel is given by A12 in torque control See function code F6．06－F6．11 description．

F4．15

Speed limit channel selection 2 of torque control mode （reverse）	
$0 \sim 2$	0

This function code is used to set reverse speed limit channel of torque control．
0 ：keypad number setting 2
See F4． 17 setting．
1：All
Reverse speed limit channel is given by AIl in torque control．See function code F6．00－F6．05 description．
2： Al
Reverse speed limit channel is given by AI2 in torque control．See function code F6．06－F6．11 description．

F4．16	Keypad limit speed 1		
	$0.0 \sim 100.0 \%{ }^{*}$ 【F0．15】 max．freq．	100.0%	

Keypad limit speed 1is relative to the value of maximum output frequency．This function code corresponds to farward speed limit value when $\mathrm{F} 4.14=0$ ．

\[

\]

Keypad limit speed 2 is relative to the value of maximum output frequency．This function code corresponds to reverse speed limit value when $\mathrm{F} 4.15=0$ ．

F4．18	Torque rise time		
	$0.0 \mathrm{~s} \sim 10.0 \mathrm{~s}$	0.1	
F4．19	Torque decline time		
	$0.0 \mathrm{~s} \sim 10.0 \mathrm{~s}$	0.1	

Torque rise／decline time defines the time of torque rising from 0 to maximum value and falling from maximum value to 0 ．

F4．20	motoring torque limit of vector mode	
	G type：180．0\％ $0.0 \% \sim 200.0 \%$ \％rated current of motor Ptype：120．0\％ $0.0 \% \sim 200.0 \%{ }^{*}$ rated current of motor	Depending on model
	brake torque limit of vector mode	
F4．21	G type：180．0\％ $0.0 \% \sim 200.0 \%$＂rated cumal of motor Ptype：120．0\％ $0.0 \% \sim 200.0 \%{ }^{\text {T}}$ rated carrent of motor	Depending on madel

F4．22	torque detection action	
	$0 \sim 8$	0
F4．23	torque detection level	

	G type: 150.0\% $0.0 \% \sim 200.0 \%$ *rated current of motor Ptype: 110.0\% $\mathbf{0 . 0 \%} \sim \mathbf{2 0 0 . 0 \%}{ }^{\text {* rated current of motor }}$	Depending on model
F4.24	torque detection time	
	$0.0 \sim 10.0 \mathrm{~s}$	0.0

When actual torque is within F4.24 (torque detection time) and continuously greater than F4.23 (torque detection level), the VFD will respond with corresponding action according to F4.22 setting. The torque detection value corresponds to the motor rated torque when set specified as 100%.
0 : detection invalid
No torque detection is processed.

Over-torque is only detected during emuins speed running, and ithr merterey detected, the VFD will stop output and the motor will coast to stop.

 Le mpar mol whe homp

Only detect insufficient torque during constant speed rumning in they WrD kape on running after insufficient torque detected.

Detect insufficient torque thitifise whole ruming process, and after it is detected, the VFD will stop output and the motor will coast to stop.

F5 VF control parameter

	50
	$0 \sim 5$

This group of parameters are used to define motor V/F setting mode to cater for insera load characteristic. Five fand tarwis and one user-defined curve can be selected according to the setting of F5.00.
0 : linear curve
Linear curve is suitable for common constant torque type load, output voltage and output frequency are in linear relation, as straight line 0 showed in Fig. F5-1.
1: decreasing torque curve 1 (power of 1.3)
Decreasing torque tuthe 1 , output voltage value is output frequency value to the power of 1.3 , inirine curve 1 showed in Fig F5-1.
2: decreasing torque curve 2 (power of 1.5)
Decreasing torque curve 2 , output voltage value is cutput frequency value to the power of 1.5 , warve 2 showed in Fig F5-1.
3: decreasing torque curve 3 (power of 1.7)
Decreasing toque curve 3 , output voltage value is output frequency value to the power of 1.7 , as curve 3 showed in Fig F5-1.
4: square curve
Square curve is suitable for square torque type load such as draught fan and water pump to achieve the optimum energy-saving effect. Output voltage value is output frequency value to the second power, as curve 4 showed in Fig. F5-1.

5: user-defined V/F curve (determined by F5.01~F5.06
When set F5.00 as 5, users can customize V/F curve via F5.01~F5.06, by adding (V1,F1), (V2,F2),(V3,F3), origin, and n47. freq. point to form a broken line,so as to meet special load characteristic. The curve is as showed in Fig. F5-2.

F5.01	V/F frequency value F1	
	$0.00 \sim$ frequency value F 2	12.50
F5.02	V/F voltage value V1	
	$0.0 \sim$ voltage value V2	25.0\%
F5.03	V/F frequency value F2	
	Frequency value F1~frequency value F3	25.00
F5.04	V/F voltage value V2	
	Voltage value $\mathrm{V} 1 \sim$ voltage value V 3	50.0\%
F5.05	V/F frequency value F3	
	Frequency value F2 \sim motor rated	37.50
	frequency	
F5.06	V/F voltage value V3	
	Voltage value $\mathrm{V} 2 \sim 100.0 \%$ * motor rated voltage	75.0\%

Fig. F5-2 User Setting Vreq. Curve

F5.07	torque compensation set	
	$0.0 \sim 30.0 \%$ motor rated voltage	Type setting
	torgue compensation cut-off frequency	
	$0.0 \sim$ motor rated power	50.00

To compensate for low frequency torque characteristics, it is feasible to boost output voltage. This function code lindula automatically torque compensation with set value of 0.0% and manual torque compensation with any set value other than 0.0%. F5.08 defines cut-aff frequency fz of manual torque compensation, ini hethad in Fig. F5-3 (Vb is manual boost voltage).

Fig. F5-3 Torque Boost ${ }^{\text {fb }}$

$!$ Notice:

: in common V/F mode, auto torque boost mode is invalid.
2: auto torque boost mode is only valid in advanced V/F mode.

F5.09 V/F control slip frequency compensation

The speed of asynchronous motor will decrease after loading, but can approach synchronous speed by slip compensation, so as to improve the control precision of motor speed; the default rated slip in vector V / F control mode is 100.0%.

This parameter is used to adjust the response speed of slip frequency compensation. The greater of this set value, the slower of the response speed, and the steadier the motor speed

\[

\]

$$
\begin{array}{|l|c|}
\hline 0 \sim 10 & 0 \\
\hline \text { onst mode this narameter is used to adiust resnonse sneed }
\end{array}
$$

In auto torque boost mode, this parameter is used to adjust response speed of torque compensation. The greater of this set value, the slower of the response speed, and the steadier the motor speed

\[

\]

In this control mode, VFD starts in normal V/F curve, and adjusts voltage to value of set target voltage after reaching set frequency point. No feedback for voltage in this mode, and the target voltage value is open loop setting.

F0- set frequency, V0-corresponding rated voltage of set frequency, $\mathrm{U}^{*} / \mathrm{U} 1 *$ - F 5.13 setting value of given channel. As showed in the above figure, the voltage is adjusted after stabilization of point a frequency. According to value of targe voltage and input voltage, the voltage point may move towards point b (increase) or point c (decrease), until reaching target value.
1: VF half separated mode, voltage closed-loop outpu
The only difference of this mode from mode 0 is that it introduced voltage closed-loop. Through PI adjustment of deviation of feedback voltage compared with set voltage, a steadier voltage can be acquired. This method can compensate target voltage deviation caused by load change, so as to acquire a higher precision of voltage control and a faster response
Output

$$
\text { Fig. F5-5 Voltage Control Mode } 1 \text { Time }
$$

This control mode is widely applied in areas like EPS power source. The control principle is as showed in the following wireframe figure

Fig. F5-6 EPS Control Principle

Notice:

Analog feedback channel voltage has a corresponding relation $\mathrm{F} 6.06 \sim \mathrm{~F} 6.11$ with actual voltage, and the relation is onl determined by voltage transducer (PT), the computational method is as follows:
Hypothetically U* $=120 \% *$ Ue $=456 \mathrm{~V}$ (AII)
PT ratio $=50$ (input AC $0-500 \mathrm{~V}$, output DC $0-10 \mathrm{~V}$)
When output reaching the target voltage 456 V , the feedback voltage of PT output is $456 / 50 \mathrm{~V}=9.12 \mathrm{~V}$
All upper limit input is 10 V , input voltage is 500 V , the ratio to rated voltage value is $500 / 380=132 \%$
o F6.09 (AI2 input upper limit voltage) can be set as 10.00 V , F6.10 (AI2 upper limit corresponding setting) can be set at 132\%.

2: VF fully separated mode, voltage open-loop outpu
In this mode, output frequency and voltage of VFD are completely independent. Frequency changes according to set $\mathrm{acc} / \mathrm{dec}$ time, voltage is adjust to target value according to rise/fall time defined by F5.19, F5.20, as showed in figure F5-7. This control mode is mainly applied in designing of some variable-frequency power source.

Fig. F5-7 Voltage Control Mode 2
3: VF fully separated mode, voltage closed-loop output
The only difference of this mode from mode 2 is that it introduced voltage closed-loop. Through PI adjustment of deviation of feedback voltage compared with set voltage, a steadier voltage can be acquired. This method can compensate target voltage deviation caused by load change, so as to acquire a higher precision of voltage control and a faster response.

F5.13 voltage setting channel
0 : digital setting
Set the target voltage value by function code F5.15.

1: All
Specify target voltage value by analog quantity AI1, and the corresponding physical quantity F 6.00 of AI1 should he set as 2 (voltage directive).
2: AD
Specify target voltage value by analog quartity AL , and the corresponding physical quantity F 6.00 of AL 2 should be set as 2 (voltage directive).

F5.14	voltage feedback channel of voltage closed-loop output	
	$0 \sim 1$	0

0: AIl
Analog quantity AI1 works as voltage feedback input; P 6.00 as the corresponding physical quantity of AIl should be set as 2 (voltage directive).
1: AR2
Analog quantity AL2 works as valtage feedback input; F6.06 as the corresponding physical quantity of AL2 should be set as 2 (voltage directive).

F5.15	output voltage of digital setting		
	$0.0 \sim 200.0 \%{ }^{*}$ motor rated voltage	100%	
F5.16	deviation limit of motor closed-loop adjustment		
	$0.0 \sim 5.0 \% \%^{*}$ motor rated voltage	2.0%	

This parameter is used to limit the error amplitude of voltage regulation in close-loop mode, so as to keep the voltage in the safe range and the equipment working reliably.

F5.17 \quad VF curve max. voltage of half separated mode \qquad
This function defined the maximum voltage point when starting the equipment with voltage and frequency amin An appropriate setting of this function could prevent voltage overshoot effectively to ensure reliable operation.

F5.18	controller adjustment cycle of voltage closed-loop output
	$0.01 \sim 10.008$

This fumction code indicates the speed of voltage adjustment. Decrease this parameter if the voltage response is slow.

F5.19	Voltage rising time		
	$0.1 \sim 3600.0 \mathrm{~s}$	10.0	
F5.20	Voltage declining time	10.0	
	$0.1 \sim 3600.0 \mathrm{~s}$		

This fumction code defined the rising and falling time of voltage in the V / F fully separated control mode, ie. mode 2.
F5.21

$$
\begin{aligned}
& \text { volta } \\
& \hline 0 \sim 2 \\
& \hline
\end{aligned}
$$

$$
0
$$

on moment.
0: alarm and keeping running with the voltage in disconnection momen
1: alarm and decrease the voltage to the amplitude limiting voltage.
2: protection action and coast to stop.
2: protection action and coast to stop.

\[

\]

The maximum value of specified voltage works as the upper limit of feedback disconnection detection value. Within the time of frellate disconnection detection, when voltage feedback value is continuously lower than bothere disconnection detection value, VFD will respond with protection action according to F5.21 setting

F5.23	Detection time of voltage feedback disconnection		
	$0.0 \sim 100.0 \mathrm{~s}$	10.0	

F5. 24

limit voltage of voltage feedback disconnection		
$0.0 \sim 100.0^{\%} \mathbf{1}^{*}$ motor rated voltage	$\mathbf{8 0 . 0 \%}$	

This function code defines the maximum output voltage of VFD. When output feedback disconnection happens and voltage increases without control and lost protection, this function tis limit the output voltage within the allowed range, which ensures the safe of work load.
F6 analog and impulse parameters of input and output
F6.00 \quad AI1 input corresponding physical quantity $0 \sim 2$
0 : speed command (output frequency, $-100.0 \% \sim 100.0 \%$)
1: torque command (output torque, $-200.0 \% \sim 200.0 \%$)
AIl analog setting value works as torque command value, given torque range is $-200.0 \% \sim 200.0 \%$. Relevant setting see F6 group function code description.
2: voltage command (output voltage, $0.0 \% \sim 200.0 \%{ }^{*}$ motor rated voltage)

F6.01	AII imput lower limit	
	$0.00 \mathrm{~V} / 0.00 \mathrm{~mA} \sim 10.00 \mathrm{~V} / 20.00 \mathrm{~mA}$	0.00
F6.02	All lower limit corresponding physical quantity setting	
	-200.0\% $\sim 200.0 \%$	0.0\%
F6.03	AII input upper limit	
	$0.00 \mathrm{~V} / 0.00 \mathrm{~mA} \sim 10.00 \mathrm{~V} / 20.00 \mathrm{~mA}$	10.00
F6.04	AI1 upper limit corresponding physical quantity setting	
	-200.0\% $\sim 200.0 \%$	100.0\%
F6.05	AI1 input filtering time	
	$0.00 \mathrm{~s} \sim 10.00 \mathrm{~s}$	0.05
F6.06	A22 input corresponding physical quantity	
	0~2	0

0 : speed command (output frequency, $-100.0 \% \sim 100.0 \%$
1: torque command (output torque, $\mathbf{- 2 0 0 . 0 \%} \sim \mathbf{2 0 0 . 0 \%}$)
AIl analog setting value works as given value of torque command, which ranges $\mathbf{- 2 0 0 . 0 \%} \sim \mathbf{2 0 0 . 0 \%}$. For relevant setting
see F6 group function code description.
2: voltage command (cutput voltage, $0.0 \% \sim 200.0 \%{ }^{*}$ motor rated voltage)

F6.07	Al2 input lower limit	
	$0.00 \mathrm{~V} \sim 10.00 \mathrm{~V}$	0.00
F6.08	AI2 lower limit corresponding physical quantity setting	
	-200.0\%~200.0\%	0.0\%
F6.09	Al2 input upper limit	
	$0.00 \mathrm{~V} \sim 10.00 \mathrm{~V}$	10.00
F6.10	AT2 upper limit corresponding physical quantity setting	
	-200.0\% ~ 200.0\%	100.0\%
F6.11	AI2 input filtering time	
	$0.00 \mathrm{~s} \sim 10.00 \mathrm{~s}$	0.05

These above function codes defined input range of analog input voltage channel $\mathrm{AII}, \mathrm{AI}$, and the corresponding physical quartity percentage and filtering time constant AII can be chosen as voltage/current imput via J1 wire jumper, and the digital setting can be based on the relation of $0 \sim 20 \mathrm{~mA}$ in accordance with $0 \sim 10 \mathrm{~V}$. The specific setting should be depended on the actual condition of input signal.
AI1, AD input filtering time consilit used for filtering process of analog input signal, thus eliminating the disturbing influence. The greater of the time constant, the better of the processirference ability, and the steadier of the thenthol, but the slower of the response; otherwise, the smaller of the time constant, the faster of the response, but the weaker of the anti-interference ability, and the control may not he steady. If the optimum value can't be decided in practical application, make appropriate adjustment for this parameter based on whether the control is steady and response delay condition.

F6.12	Erru limit of analog ingut		
	$0.00 \mathrm{~V} \sim 10.00 \mathrm{~V}$	0.10	

When analog input signal shows frequent fluctuation around the set poims, set F6.12 to restrain the frequency fluctuation caused by this fluctuation.

When F0.18=1 (high frequency mode), the upper limit of this function code is 500.0 Hz

F6.14	7ero-frequency hysteresis		
	0.00 - zero-frequency running threshold valuc	0.00	

These two function codes are used to set zero-frequency hysteresis control function. Take analog AII current setting channel for example, as showed in Fig F6 L
Start jrocess:
After start command is sent, anly when analog AIl current input reaches or exceeds value Ib and the according frequency reaches fb , the motor can start and speed up according to accelerating time until reaching the according frequency of analog AIl current input.
Stop process:
When All current falls to value lb during running the VFD won't stop imnialiatcly. Onily when All current falls to la and the eccording setting fiequency is fin, the VFD will stop outpul. This fo is defined as acro-frequency running threshold valuc, dee according selting frequency is fa, the VFD will stop outpul. This ib is defined as zero
This function can achieve sleep function and maintain an energy-saving operation, and avoid frequent fluctuation around threshold frequency through hysteresis width.

Fb: zero frequency tunning threshold value
$\mathrm{Fa}: \mathrm{lb}$ - zero frequency backlash

> Fig. F6-1 zero-frequency function schematic diagram

F6. 15
External impulse input corresponding physical quantity

0 : speed command (output frequency, $-100.0 \% \sim 100.0 \%$)
1: torque command (output torque, $-200.0 \% \sim 200.0 \%$)

F6. 16	External impulse input lower limit
	$0.00-50.00 \mathrm{KH} \mathbf{z}$ 0.00
F6.17	External impulse lower limit corresponding physical quantity setting

external impulse input upper limit			20.00
$0.00 \sim 50.00 \mathrm{KHz}$			
external impulse upper limit corresponding physical quantity setting	100.0%		
$-200.0 \% \sim 200.0 \%$	0.05		
external impulse input filtering time			
$0.005 \sim 10.00$ s			

F6. 20 $0.00 \mathrm{~s} \sim 10.00 \mathrm{~s}$

$$
\begin{aligned}
& \text { ned input range of impulse input chaonel and the } c \\
& \text { the defined as "immulse frentence innu"" function }
\end{aligned}
$$

hese above function codes detined input range of impulse input channel and the corresponding physical quantity percentage. Muln function terminal X6 must be defined as "impulse frequency inpur" function.
Impulse input filtering time constant are mainly used for filtering prucess of impulse signal. The principle is the same with analog input filtering time constant

F6.21	AO1 multi-function analog output terminal		
	$0-13$		
	0		
	AO2 multi-function analog output terminal		
	$0-13$		
36.23	DO multi-function impulse cutput terminal		
	$0-13$		

These above function codes determined the corresponding relation of multi-function analog output terminal AO, impulse output teruinal DO with each physical quantity. As showed in the following tahle:

item	AO1	range
Output freq. (before slip compensation)	OV/0mA \sim AO upper limit	0~max. output freq.
	2V/4mA \sim AO upper limit	0 -max. oupur freq.
Outpur freq. (afler slip compensation)	OV/OmA~AO upper limit	$0 \sim \max$ ourput freq.
	2V/4mA \sim AO upper limit	0 -max. outpul freq.
Set freq.	OV/0mA \sim AO upper limit	$0 \sim$ max output freq.
	2V/4mA \sim AO upper limit	$0 \sim \max$ output freq.
Motor speed	OV/0mA~AO upper limit	$0 \sim$ motor synchronous speed
	2V/4mA \sim AO upper limit	$0 \sim$ motor synchronous speed
Output current	0V/0mA \sim AO upper limit	$0 \sim 2$ times of rated current
	2V/4mA \sim AO upper limit	$0 \sim 2$ times of rated current
Oulput voltage	0V/0mA~AO upper limit	$0 \sim 1.2$ times of rated output voltage
	2V/4mA~AO upper limit	$0 \sim 1.2$ times of rated output valtage
Bus voltage	OV/0mA \sim AO upper limit	0~800V
	2V/4mA~AO upper limit	$0 \sim 800 \mathrm{~V}$
PID set value	OV/0mA~AO upper limit	0~100\%* 10 V
	2V/4mA~AO upper limit	0~100\% ${ }^{*} 20 \mathrm{~mA}$
PID feedback value	OV/0mA~AO upper limit	0~100\%*10V
	2V/4mA~AO upper limit	0~100\%*20mA
All	$0 \mathrm{~V} / 0 \mathrm{~mA} \sim \mathrm{AO}$ upper limit	$0 \sim 10 \mathrm{~V}$
	2V/4mA~AO upper limit	$0 \sim 10 \mathrm{~V}$
Al2	0V/0mA~AO upper limit	$0 \sim 20 \mathrm{~mA}$
	2V/4mA \sim AO upper limit	$0 \sim 20 \mathrm{~mA}$
Input impulse	0V/0mA \sim AO upper limit	$0 \sim 50 \mathrm{KHZ}$

frequency	$2 \mathrm{~V} / 4 \mathrm{~mA} \sim \mathrm{AO}$ upper limit	$0 \sim 50 \mathrm{KHZ}$
Torque current	$0 \mathrm{~V} / 0 \mathrm{~mA} \sim \mathrm{AO}$ upper limit	$0 \sim 2$ times of rated current
	$2 \mathrm{~V} / 4 \mathrm{~mA} \sim \mathrm{AO}$ upper limit	$0 \sim 2$ times of rated current
Flux current	$0 \mathrm{~V} / 0 \mathrm{~mA} \sim \mathrm{AO}$ upper limit	$0 \sim 2$ times of rated current
	$2 \mathrm{~V} / 4 \mathrm{~mA} \sim \mathrm{AO}$ upper limit	$0 \sim 2$ times of rated current

DO range: DO lower limit \sim DO upper limit, correspond separately to upper limit and lower limit of each physical quantity.

F6.24	corresponding physical quantity of AO1 output lower limit	
	-200.0\% ~ 200.0\%	0.0\%
F6.25	A01 output lower limit	
	$0.00 \sim 10.00 \mathrm{~V}$	0.00
F6.26	Corresponding physical quantity of AO1 output upper limit	
	-200.0\% ~ 200.0\%	100.0\%
F6.27	AO1 output upper limit	
	$0.00 \sim 10.00 \mathrm{~V}$	10.00
F6.28	Corresponding physical quantity of AO2 output lower limit	
	-200.0\% $\sim 200.0 \%$	0.0\%
F6.29	AO2 output lower limit	
	$0.00 \sim 10.00 \mathrm{~V}$	0.00
F6.30	Corresponding physical quantity of AO2 output upper limit	
	-200.0\% $\sim 200.0 \%$	100.0\%
F6.31	AO2 output upper limit	
	$0.00 \sim 10.00 \mathrm{~V}$	10.00
F6.32	Corresponding physical quantity of DO output lower limit	
	-200.0\% $\sim 200.0 \%$	0.0\%
F6.33	DO output lower limit	
	$0.00 \sim 50.00 \mathrm{kHz}$	0.00
F6.34	corresponding physical quantity of DO output upper limit	
	-200.0\% ~ 200.0\%	100.0\%
F6.35	DO output upper limit	
	$0.00 \sim 50.00 \mathrm{kHz}$	50.00

0 : control tetminal idle
1: forward running (FWD)
Short-circuit terminal with COM, VFD runs forward. Valid only when F0.06=1.
2: reverse running (REV)
Short-circuit terminal with COM, VFD runs reverse. Valid only when F0.06=1.
3: three-wire ruming control
Refer to function description of running mode 2,3 (three-wire control mode 1, 2) of F7.11.
4: forward jog control
Short-circuit terminal with COM, VFD runs as jog forward. Valid only when F0.06=1.
5: reverse jog control
Short-circuit terminal with COM, VFD runs as jog reverse. Valid only when $\mathrm{F0.06}=1$.
6: coast to stop
This function is the same with F1.08. Only that it is realized by terminal and convenient for remote control
7: external reset signal input(RST)
If the VFD malfunctions, it can reset through this terminal. This function is the wine with key (STOP/RESET), and is valid in any command channel.
8: external fault normally-open input
9: external fault normally-closed input

10: emergency stop function theike whit fitet ypoll?
This function is used in emergency stop condition. The lemwial is short-circuited with COM, and the braking will proceed with emergency standby decreasing time (F1.36).
11: reversed
12: frequency increase
Terminal is short-circuited with COM, frequency increases. Valid only when frequency setting channel is digital setting 2 (terminal UP/DOWN adjustment).
13: frequency decrease
Terminal is short-circuited with COM, frequency decreases. Valid only when frequency setting channel is digital setting 2 (terminal UP/DOWN adjustment).
14: UP/DOWN terminal frequency zro clearin
Conduct zero clearing to digital frequency 2 (UP/DOWN terminal adjustment) increment through terminal.
15: multi-speed selection 1
16: multi-speed selection 2
17: multi-speed selection 3
8: multi-speed selection 4
By selecting ON/OFF combination of these function terminals, 16 segments of speed at most can be achieved, as showed in the following table:

Multi-speed selection SS4	Multi-speed selection SS3	Multi-speed selection SS2	Multi-speed selection SS1	Speed segment
OFF	OFF	OFF	OFF	0
OFF	OFF	OFF	ON	1
OFF	OFF	ON	OFF	2
OFF	OFF	ON	ON	3
OFF	ON	OFF	OFF	4
OFF	ON	OFF	ON	5
OFF	ON	ON	OFF	6

-69-

OFF	ON	ON	ON	7
ON	OFF	OFF	OFF	8
ON	OFF	OFF	ON	9
ON	OFF	ON	OFF	10
ON	OFF	ON	ON	11
ON	ON	OFF	OFF	12
ON	ON	OFF	ON	13
ON	ON	ON	OFF	14
ON	ON	ON	ON	15

Figure F7-1 Multi-speed Rumning
19: Acc/Dce time selection TT1 20: Acc/Dec time selection TT2
By selecting the ON/OFF combination of these fimetion terminals, there would be 4 kinds of acc/dec time at most, as
showed in the following table:

Acc/Dec time selection terminal 2	Acc/Dec time selection terminal 1	Acc/Dec time selection
OFF	OFF	Acc time 1/Dec time 1
OFF	ON	Acc time 2/Dec time 2
ON	OFF	Acc time 3/Dec time 3
ON	ON	Acc time 4/Dec time 4

1: run command channel

22: run command channel 2
By selecting the ON/OFF combination of these function terminals, there would be 3 kinds of run command channels and 4 kinds of methods at most, as showed in the following table.

Rum command channel selection terminal 2	Run command channel selection terminal 1	Run command channel
OFF	OFF	Determined by function code P0.06
OFF	ON	O: keypad
ON	OFF	1: terminal
ON	ON	2: communication
23: Acc/Dec prohibit		

23: Acc/Dec prohibit
When this terminal is valid, VFD will maintain current frequency without influence of extemal signal (except stop command).
24: VFD operating prohibiting
If this function is enabled, the drive that is operating will coast to stop and the drive ready to run will be prohibited to
itart. This function is mainly used as safety protection
25: switch operating command to keypad
When this terminal function is enabled, the operating command is switched to keypad control from preseat therial farcibly. If the terminal is discomnected, the previous operating command channel will be enabled.
26: switch operating command to terminal
When this terminal function is enabled, the operating command is switched to terminal control from present channel farcibly. If the terminal is discomnected, the previous operating command channel will be enabled.
27: switch operating command to communication
When this terminal function is enabled, the operating command is switched to communication control from present channel forcibly. If the terminal is disconnected, the previous operating command channel will be enabled.
28: clear the setting of auxiliary frequency
This function is only valid for digital auxiliary frequency ($F 0.08=0,1,2$) to clear it to zero, so that the reference frequency is determined solely bay main reference.
29: switch from frequency source A to $K^{*} B$
 channel is switched to frequency source B , and back to A when it is disabled
30: switch from frequency source A to $A+K^{*} B$
When this terminal function is enabled, if F 0.09 (frequency combinational algorithm) is set i 7, the frequency setting chamel is switched to frequency source $\left(\mathrm{A}+\mathrm{K}^{*} \mathrm{~B}\right)$, and back to A if it is disabled.
31: switch from frequency source A to $A-K^{*} B$
When this terminal function is enabled, if F 0.09 (frequency combinational algorithm) is set Hi 8 , the frequency setting channel is switched to frequency source ($A-K^{*} B$), and back to A if it is disabled.
32: reserved
33: PID control input
This terminal function is enabled when frequency is input via PID manually. Refer to F8 group parameter setting for details.
34: PID control pause
This terminal function is used for pause control of operating PID. When it is enabled, PID adjustment will stop and the VFD remain the present frequency. Continue PID adjustment when the function is disabled, the running frequency will change to the adjustment.
35: start traverse operation
If the traverse operation is set to be manual start, then trarmer function is enabled if this function is selected. Otherwise the VFD runs with preset frequency of traverse operation. Refer to F9.55~F9.65.
36: pause traverse operation
Short-circuit the terminal with COM, the VFD will stop the traverse operation and remain the present frequency; if the terminal is disabled, the VFD will resume traverse operation.
37: traverse reset
If this function is selected, closing the terminal aen clear the information about traverse status no matter the dive is in auto or manual start mode. Traverse operation continues after this terminal is disconnected (run preset freq. if there is preset freq.). See F9.55~F9.65.
38: MC tupol lyat

39: PLC pause
It is used to pause the PLC operation. The driver will operate at zero frequency if this terminal is enabled, but the running time is not counted; if the terminal is disabled, the driver will start in rotating speed tracking method and roeminae in PLC operation. Refer to $\mathrm{F9.00} \sim \mathrm{F9} 95$ for function description.
40: PLC status reset
When the drive stops in PLC mode and this mandilion function enabled, the memorized PLC operating information (operating stage, operating time, operating frequency, etc.) will be cleared. The driver will restart if the terminal function is disabled. See F9.
41: clear the counter to zero
Short-circuit the terminal with COM, this function is to clear to zero and is used in conjunction with function NO.42.
42: input signal to trigger the counter
This terminal is used to input counting pulse signal to the internal counter of the driver. The counting value increase by 1 each time receiving one impulse (decrease by 1 for down-counting). The max. pulse frequency is 200 Hz . Sce F7.31~ F7.33.

43: timing trigger input
Trigger port of internal timer. See F7.35~F7.36.
44: timing zero clearing
Short-circuit the terminal with COM, this terminal is to clear the internal timer to inio and is used in conjunction with function NO.43.
45: external impulse frequency input (only effective to X 6)
This function terminal is pulse input port of primiple frequency channel A, and is only effective to $\mathbf{X} 6$, and is used in conjunction with F 0.07 .
46: clear the length information
When this function terminal is effective, the m lex recounting. See F9.67~F9.73.
47: Input the signal of length (only effective to X6)
This function is effective only to multi-function input terminal X6, and the impulse signal received by this function terminal works length setting. The mumber of received impulse has a connection with the length, which is introduced in $\mathrm{F} 9.67 \sim \mathrm{F9.73}$
48: switch speed and torque control
When selection condition (termied switah) of speed and torque control is valid, this in indere and torque omntrol is on; if this terminal is ineffective, the speed control is on. See F4.10~F4.11 for relevant parameter setting F4.11 is the delay time of speed and torque switch).
49: prohibit torque control
Torque control is prohibited.
50~55: reserved
56~57: reserved
58: start/stop (manual)
When this terninal is valid, frequency is given by AII, PD control is not conducted, and controlled by interlock signal. The earlier imput interlock signal will start first If input together, start the one corresponding smaller number.
59: running allowed (X2)
This terminal is used to control start/stop of VFD, normally connecting signal of external water shortage or high voltage.
60: interlock1 (X3)
This terminal comnection corresponds relay R2 output.
61: interlock2 (X4)
This terminal connection corresponds relay R3 output.
62: interlock3 (X5)
This terminal commection corresponds relay R4 output.
63: PFC start/stop (X6)
When this terminal is valid, F 豆 control is conducted, and controlled by interlock signal. The earlier input interlock signal will start first If input together, start the one corresponding smaller number.
64: A frequency switch B and run
65~99: reserved

F7.08 | digital filtering times | |
| :--- | :--- |
| | $1 \sim 10$ |

$1 \sim 10$ \qquad
\square
This function is used to set sensitivity of input terminal. If digital input terminal is susceptible to interference so as to anse and action, increase parameter to improve the anti-interference ability, but overlarge value will result in a lower sensitivity.
7.09 Terminal function detection when powerup

0 : terminal control invalid when powerup
During powering up, even detected that the terminal of operation command is valid (closed), the driver will not start; only when the terminal closed again after disconnected, the driver will start.
1: only when the terminal control valid when powerup
During powerup, the driver will start if the terminal is detected valid (closed).

Bit0: positive/negative logic of \mathbf{X} Bit1: positive/negative logic of X2 Bi22: positive/negative logic of X3 Bit3: positive/negative logic of $\mathbf{X} 4$

Bit4: positive/negative logic of XS Bit5: positive/negative logic of XS
Bit: positive/negative logic of $X 6$ Bit6: positive/negative logic of X7 Bit7: positive/negative logic of X8

0 : positive logic, which refers that the terminal Xi is enabled when it connects with the porm disabled if discomnected
 disconnected

F7.11	FWD/REV terminal control mode			0
	$0 \sim 3$	0		

This function code defines 4 kinds of modes of controlling VFD operation via external terminal.
0 : 2-wire control mode 1
Xm: forward command (FWD); Xn: reverse command (REV). Xm and Xn are two random terminals among X1-X8 betired ne FWD and REV function respectively. In this control mode, K1 and K2 can both control operation and direction of the driver independently.

Fig. F7-2 2-wire Control Mode 1

K2	K1	command
0	0	stop
0	1	forward
1	0	mpent
1	1	stop

1: 2-wire control mode 2
Xm: forward command (FWD); Xn: reverse command (REV). Xm and Xn are two randem terminals among X1-X8 defined as FWD and REV function respectively. In this control mode, K1 is switch of run and stop, K2 is for direction switching.

Fig. F7-3 2-wire Control Mode 2

2. 3-wire control mode 1

Xm : forward command (FWD); Xn : reverse command (REV); Xx : stop command. Xm, Xn and Xx are 3 random terminais among X1-X8 defined as FWD, REV and 3-wire control function respectively. K1 and K2 are invalid without comenecting of K3. After K3 is connected, K1 is triggered, and the VFD runs forward; disconneet K3, then the VFD will stop.

3: 3-wire control mode 2
Fig. F7-4 3-wire Control Mode 1
Xm : operating command; Xn : ruming direction; Xx : stop command. $\mathrm{Xm}, ~ \mathrm{Xn}, ~ \mathrm{Xx}$ are 3 random terminals among $\mathrm{X1} 1-\mathrm{X8}$ defined as FWD, REV and 3-wire control function. K1 and K2 are invalid without connection of K3. After K3 is connected, trigger K1, and the VFD runs forward; triggering K2 alone is invalid; trigger K2 after K1, the driver will switch its rumning direction; disconncet K3, the driver will stop.

Fig. F7-5 3-wire control mode 2

\triangle Notice:
 When forward running with 3 -wire control mode 2 , the VFD can reverse steadily only ir the REV terminal is normally closed, once disconnected of the terminal, the driver will runs forward.

F7. 12

UP/DOWN terninal frequency modifying rate
$0.01 \sim 50.001 / / S$

\square

F7.14	Y1 output delay time	
	$0.0 \sim 100.0 \mathrm{~s}$	0.0
	Y2 outpul delay time	
	$0.0 \sim 100.0 \mathrm{~s}$	0.0

F7.16	R1 output delay time	
	$0.0 \sim 100.0 \mathrm{~s}$	0.0
	R2 outpout delay time	
	$0.0 \sim 100.0 \mathrm{~s}$	0.0

his function code defines digital output terminal and the delayed time from relay condition changing to output changing

F7.18	Open collector output terminal Y1	
	0~99	0
F7.19	Open collector output terminal Y2	
	0~99	0
F7. 20	Programmable relay R1 output	
	0~99	3
F7. 21	Programmable relay R2 output	
	0~99	0

0: no output
1: VFD forward running
The indicator signal output when the VFD is in forward rumning.
2: VFD reverse running
The indicator signal output when the VFD is in reversing running.
3: fault output
The indicator signal output when the VFD fault occurs.
4: freq $/$ speed level detection signal (FDT1)
Refer to F7.24~F7.26 function description.
5: freq/speed level detection signal (FDT2)
Refer to $\mathrm{F} 7.27 \sim$ F7. 29 function description.
6: freq/speed arrival sigual (FAR)
Refer to F7. 23 function description
7: indicator during zero-speed running
The indicator signal output when VFD is still in running state and output frequency is 0.00 Hz .
8: upper limit arrival of output frequency
The indicator signal output when VFD oupput frequency reached its upper limut.
9: lower limit arrival of output frequency
The indicator signal output when VFD output frequency reached is lower limit.
10: lower limit arrival of preset frequency
The signal is given if the preset frequency is lower than lower limit during VFD ruming.
11: pre-alarm signal of overload
The signal is given after alarm-delay time (FA.13) if the output current is higher than overioad pre-alarm level (FA.12)
12: counter detection sigral output
The indicator signal is given when counter detection value arrives, and it is cleared when reset value of counter arrives. Sce F7.33.
13: counter reset signal output
The indicator signal is given when counter reset value arrives. See F7.32.
14: driver ready
This signal is output when the driver has no fault, its bus voltage is normal, the start prohibit function is disabled, so that the driver is ready to starl for direct command.
15: one cycle finished of programmable multi-speed ruming
After one cycle of programmable multi-speed (PLC) rum is finished, one effective impulse signal is seat with width of 50 mms .
16: programmable muiti-speed stage finished
After the present stage of programmable mulit-speed (PLC) is finished, one effective impulse signal is sent with width of 500 ms .
17: upper and lower limit of traverse frequency
When traverse frequency function is selecled, if the fluctuation range of traverse frequency counted based on central frequency exceeds upper limit F0.16 or lower limit F0.17, this indicator signal will be sent. As showed in the following figure.

18：current limiting action
This signal is sent when VFD is during curremt limiting．See FA． $06 \sim$ FA． 08 for limiting protection setting．
19：stall over voltage
This signal is sent when VFD is in action of stall over voltage．See FA． 04 for the carresponding protection setting
20：low voltage lock－up
This signal is cutput when DC bus voltage is lower than the low voltage limit．

\triangle Notice：

When undedrvoltage of DC bus happens during stopping，the LED displays＂PoFF＂；when it happens during rumning，if FA．02＝0，the LED displays＂PoFF＂，if FA．02＝1，the LED displays＂E－07＂and the alarm indicator is on．

21：dormancy state

This signal is sent when the VFD is in dormancy state．
22：VFD alarm signal
This signal is sent when the following situation halspiy FI disconnection，RSES communication fail，keypad communication fail，EEPROM R／W fault，encoder disconnection，etc．
23：AI1 $>$ AI2
This indicator signal is sent when analog input AI1 $>$ AL2．See F6．05～F6．11．
24：preset length arrival
This signal is given when the actual length（F9．69）\geq preset length（F9．68）．The length counting terminal X6 is set as function of NO．47．
25：preset timing time arrival
This signal is give when the actual timing time $>$ F 7.36 （preset timing time）．
26：dynamic braking
This signal is sent when the VFD is in dynamic braking action．See FC． $00 \sim$ FC． 03.
27：DC braking action
This signal is nere when the VFD is in DC braking action．See description of function code F1．00～F1．12 for marraprotrentins

29：4x
This signal is sent during torque control．Refer to $\mathrm{F} 4.10 \sim \mathrm{~F} 4.23$ ．
30：over torque
This indicator signal is sent according to F4．22～F4．24 setting．
31：auxiliary motor 1
32：auxiliary motor 2

The output terminal function $34 \sim 49$ items correspond to $0 \sim 15$ segments of multi－speed or simple PLC，and this signal is sent when the corresponding segment of output terminal setting arrives．
50：VFD running indication
Indication signal coutput when VFD is in in forward／reverse rumning state
51：temperature arrival indication
This signal is sent when actual temperature（ $\mathrm{d}-33 \sim \mathrm{~d}-34$ ）is higher than threshold temperature（FA．14）

52～99：reserved

F7．22

Effective logic setting of output terminal（Y1～Y2）	
$0 \sim 3 \mathrm{H}$	0

Bit0：effective logic definition of Y1 terminal
Bit1：effective logic definition of Y2 terminal
0：positive logic，i．c．Yi terminal is enabled when it connects with common terminal and disabled if disconnected
1：negative logic，ie．Yi terminal is disabled when it connects with common terminal and enabled if disconnected．
When $\mathrm{F} 7.22=0, \mathrm{Y} 1$ and $Y 2$ terminals are enabled when they connect with common terminal and enabled if disconnected．
When F7．22＝1，Y1 terminal is disabled when it connect with common terminal and enabled if disconnected；Y2 terminal is disabled when it connect with common terminal and enabled if disconnected．
When $F 7.22=2$ ，Y1 terminal is enabled when it connect with common terminal and disabled if disconnected；Y2 terminal is disabled when it connect with common terminal and enabled if disconnected．
When $F 7.22=3$ ，Y1 and Y2 terminals are disabled when they connect to common terminal and enabled if disconnected．

Fig．F7－7 Frequency Arrival

0：speed preset value
1：speed detection value

F7．25	FDT1 level setting		
	$0.00 \mathrm{~Hz} \sim$ 【F0．16】 upper limit Freq．	50.00	
	FDT1 lag	2.0%	
	$0.0 \sim 100.0 \%^{*}$ 【F7．25】	0	
F7．27	FDT2 detection mode		
	$0 \sim 1$	0	

0：speed preset value
1：speed detection value

These above function codes（F7．24～F7．29）are supplementary instruction to NO．4， 5 function of function codes F7．18～ F7．21．When output frequency of VFD exceeds preset value of PDF level，the effective signal is output（open collector signal， low level after pulling up of resistance）；when cutput frequency decrease to lower than FDT signal（preset value－lag value）， invalid signal is output（high impedance）．As showed in the following figure．

Fig．F7－8 Frequency Level Detecting

0 ：stop counting，stop output
1：stop counting，continue output
2：cycle cutput，stop oatput
3：cycle output，continue output
The driver executes the according action when counting value arrives at preset value of F 7.32 ．

F7．31	Counting start condition	
	$0 \sim 1$	1

0 ：start during power on
1：start in running status，stop in stop status
These above is based on premise of counting impulse．

F7．32	Counter reset value		
	【F7．33】～65535	0	
F7．33	Counter detection value		
	$0 \sim 【$ F7．32】	0	

This function code defines counting reset value and detection value of counter．When the counting value arrives at the preset value of F7．32，the corresponding multi－function output terminal will send out valid signal and the counter will be cleared to wint
When the counting value reaches the preset value of F7．33，the corresponding output terminal（output signal of counter detection）sends out valid signal．If the counting continues and exceeds the preset vahue of $F 7.32$ ，this output signal will be revoked when the counter is cleared．
As showed in the following figure：the programmable relay output is set as reset signal output，open collector output Y 1 is set at counter detection output，F7．32 is set as 8，F7．33 is set as 5．When the detection value is 5，Y1 output valid signal and maintain it；when detection value arriving at reset value 8 ，the relay output valid signal of one cycle impulse and the colitr is cleared，meanwhile， Y 1 and relay will revoke output signal．

Fig．F7－9 Counter Reset and Detection Setting

0：stop timing，stop output
1：stop timing，continue output
2：cycle timing，stop output
3：cycle timing，continue output
This action is executed when the counting value arrives at preset value of F7．36．

F7．35	Timing start condition	
	$0 \sim 1$	1

0：start during power on
1：start in rumoing status，stop in stop status．

F7．36	Timing setting	
	$0 \sim 65535 \mathrm{~s}$	0
F7．37	Y1 turn off delay time	0.0
	$0.0 \sim 100.0 \mathrm{~s}$	0.0
F7．38	Y2 turn off delay time	
	$0.0 \sim 100.0 \mathrm{~s}$	0.0
F7．39	R1 turn off delay time	
	$0.0 \sim 100.0 \mathrm{~s}$	0.0
F7．40	R2 turn off delay time	$0.0 \sim 100.0 \mathrm{~s}$
	$0.0 \sim 1$	

HPretherib rinumer

An integrated analog feedback control system can be formed through this group of parameters setting．
Analog feedback control system：specified value is input via AII，the physical quantity of controlled object is converted to current of $4 \sim 20 \mathrm{~mA}$ and input via AD ，then pass through built－in PI regulator，which form closed loop control system，as showed in the following figure：

Fig．F8－1 Analog Feedback Control System

PD regulation is as follows：

F8．00 PD operation input mode

0 ：auto
1：manually input via defined multi－function terminal

Hay $|$| Fharsthan | |
| :--- | :--- |
| $0-4$ | 6 |

0：Ugatal setung
PDD input is given by digital setting，and determined by F8．02．
1：AI1
PD input is given by external analog signal All（ $0 \sim 10 \mathrm{~V} / 0-20 \mathrm{~mA}$ ）．
2：Al2
PD input is given by external analog signal Al2 $(0 \sim 10 \mathrm{~V})$
3：pulse setting
PD input is given by external impulse signal．
4：县宜 communication
PID input is given by communication

F8．02	Digital reference input
	$0.0 \sim 100.0 \%$

F8．02 $\quad 0.0 \sim 100.0 \%$
50．0\％
This function realized input setting of closed loop control via keypad when analog feedback is used．It is only effective when digital setting of closed loop setting chamnel is selected（ $\mathrm{F} 8.01=0$ ）．
For example：in closed loop control system of constant pressure water supply，this function code setting should take into full
 10 Mpa ，the corresponding voltage output is $0 \sim 10 \mathrm{~V}$ ，then we need pressure of 6 MPa ，and set the digital value as 6.00 V ，偣 the needed pressure is 6 MPa when PD regulation is steady．

F8．03	PD feedback chamnel	
	$0 \sim 7$	0

0：AI1
PID feedback is given by external analog signal All．
1：Al2
PD feedback is given by external analog signal AD2．
2：AI1＋AI2
PID feedback is given by AI1 and AL2．
3：AI1－AI 2
PID feedback is determined by difference of AI1 and AI2．When the difference is negative，the feedback value is 0 ．
4：MAX \｛AI1，AL2\}
5：MIN \｛AI1，AI2\}
6：pulse setting
7：ink isit communication

LED one＇s place：PD regulation characteristic
O：positive logic
Positive logic is defined as that when feedback signal is smaller than PID input the driver output frequency should be decreased（decrease feedback signal）so as to maintain the balance of PD．Examples are like tension control of winding

1：tepothellot
Nryovelyht is defined an that when feedhack signal is larger than PD input，the driver cutput frequency should be

1：integral regulation of automatically changing proportion
LED hundred＇s place：integral control characteristic
0 ：stop integral regulation when frequency arrives at upper／lower limit
1：continue integral regulation when frequency arrives at upper／lower limit
It is recommended to cancel continuing integral regulation for system requiring quick response．
LED thousand＇s place：reserved

F8．05	Proportional gain KP	
	$0.01 \sim 100.00 \mathrm{~s}$	1.00
F8．06	Integral time Ti	0.10
	$0.01 \sim 10.00 \mathrm{~s}$	
F8．07	Derivative time Td	0.00
	$0.01 \sim 10.00 \mathrm{~s}$	

0．00：no derivative regulation
Proportional gain（Kp）：
It determines the adjusting strength of PID regulator．The larger of P ，the larger of adjusting strength．But excessive adjusting strength will result in fluctuation easily．
When feedback and reference shows deviation，regulating value that is in proportion to deviation is cutput．If the deviation is constant，the regulating value is constant．Proportion regulation ini mporit arith to the feedback changing，but can＇t
 realize floating control alone．The larger of the proportional gain，the pricher of the rempate speed，which may result in
fluctuation．The regulating method is follows；set intarime a time value and forive time zero，use proportion
 regulation alone to operate the system，wing twitury the reference．If the offset is in the sivy direction of whoubt owning（for example，increase the reference，and the

forenitirertio

When feedback ing arfletivein refirence，output regulation value increases continuously．If the deviation exists inmisult the mpfuludan value will stay increasing until no deviation．The integral regulator an eliminate offset
 effectively，bacry hap pumar lonay
Derlitruitio（Td）：

 only relevant to the direction and value of deviation disen not of the deviation（bylf Derivative regulation is processed according to variation trend when feedback signal is thestia so as to weypil the change．Please be cautious to use it，

F8．08

```
Sampling cycle T
```

$0.01 \sim 100.00 \mathrm{~s}$
0．00：automatic
Sampling cycle corresponds to feedback．Regulator operates once in every sampling cycle．The longer of the cycle，the slower of the response，but the better of the suppress effect to interference signal．Normally no need to set this parameter．

Error limit is the ratio of deviation（feedback and reference）absolute value to reference．PID regulator stops operation when feedback is within this range，as showed in the following figure．Setting this parameter correctly is helpfiul to improve the system stability，as frequent adjustment around terget value can be avoided．

Fig．F8－3 Error Limit Schematic Diagram

F8．10	Closed loop preset freq．	
	$0.00 \sim$ upper limit freq．	0.00
	Preset freq．hold time	
	$0.0 \sim 3600.0 \mathrm{~s}$	0.0

This function code defines the driver running frequency and time before PID control operates．In some control system，for a fast arrival of controlled object at preset value，these function codes can be set to force the driver to output specific value of F8． 10 and F8．11，which means operate the PID controller to increase response speed when controlled object is approaching
the controlled urget．As showed in the following figure． the controlled target．As showed in the following figure．

Fig．F8－4 Closed Loop Preset Frequency

F8．12	Slecp mode	
	$0 \sim 2$	1

0 ：invali

1：dormant when leedhack pressure exceed or lower than threshold value
This is the firm one of PID slecp mode，as showed in Fig．F8－S．
2：dormant when feedback pressure and output frequency is stable
This is the second one of PID sleep mode，and it differs in the following two conditions（as showed in figure F8－6）：
1）if feedback value is smaller than reference and larger than reference＊（ 1 －set deviation 【F8．14】），and oupput frequency change rate is within 6% ，the sleep mode is entered after delay time 【F8．17】．

2）if feedback value increases to above reference vahue，the sleep mode is entered after delay time【FB．17】；otherwise， if the feedback value decreases to under wake－up threshold 【F8．16】，it will wake up immediately．

F8．13	Stop method of sleep mode	
	$0 \sim 1$	0

[^0]1：coast to stop
F8． 14
Deviation limit of feedback when entering sleep stane
compared with set pressure

This function parameter is only valid to the second sleep mode．

F8．15	Threshold value of slieep	
	$0.00 \sim 200.0 \%$	100.0%

This threshold value is the percentage of set pressure value．This parameter is only valid to the first sleep mode．
\square
F8． 16

Threshold value of wake－up

8.15 defines the feedback value when the driver is entering sleep mode．If the actual feedback is larger than this set value， and the output frequency arrives at lower limit，the driver will enter sleep mode（zero speed operation）after delay time defined by F8．17．
8.16 defines the feedback limit when the driver is entering operating state from sleep mode．When PID selects positive characteristic and the the actual feedback is smaller than this set value（or when PID selects negative characteristic and the actual feedback is larger than this set value），the driver will start to operate from sleep mode after delay time defined by F8． 18.

Fig．F8－5 the First Sleep Mode

Fig．F8－6 the Second Sleep Mode

F8.17	delay time of sleep	
	$0.0 \sim 6000.0 \mathrm{~s}$	100.0
F8.18	delay time of wake-up	5.0
	$0.0 \sim 6000.0 \mathrm{~s}$	
F8.19	delay time of adding pump	10.0
	$0.0 \sim 3600.0 \mathrm{~s}$	
F8.20	delay time of reducing pump	10.0
	$0.0 \sim 3600.0 \mathrm{~S}$	

F8.19~F8.20 are delay time of adding and reducing pump in constant pressure wrater supply system, see function NO. 31 and NO. 32 in $\mathrm{F} 7.18 \sim$ F7. 21

F9 Programmable Operation Parameter

$$
\begin{array}{l|l|}
\hline \text { F9.00 } & \text { PLC running mode } \\
&
\end{array}
$$

0 : stop after a single cyele
As Fig.F9-1 shows, the driver stops after a single cycle. It will start given another command. If operation time is 0 in some segment, the driver will skip to another segment.

RUN Command
Fig. F9-1 Stop after a Single PLC Cycle
1: maintain value of the last stage after single cycle
As Fig.F9-2 shows, the driver holds the frequency and direction of the last stage after single cycle.

RUN Command
Fig.F9-2 Maintain Last Stage after Single Cycle
2: continuous cycle of limited times
The diver runs with cycle times set by F9.04, and stops after reaching of cycle times. If $\mathrm{F9.04}=0$, the driver won't run.
3: continuous cycle
The driver continues rumning cycle after cycle until stop command is received, as showed in the following figure.

Fig.F9-3 PLC Continuous Cycle

F9.01	Input mode of PLC running			0
	$0 \sim 1$	$\mathbf{0}$		

0 : auto
1: manual input via multi-functional terminal

F9.02	PLC running state saving after poweroff		
	$0 \sim 1$	0	

0: not save
The PLC state will not be saved when poweroff, and the driver will start from the first stage after powerup.

1. shye

The PLC state including the stage, frequency and run time will be saved when poweroff. After powivie and receiving run command, the driver will run at the preset frequency of the stage for the remaining time of the stage.

$$
\begin{aligned}
& \text { PLC rest } \\
& \hline-{ }^{2} \text { first on }
\end{aligned}
$$

$$
\begin{array}{|l|l|}
\hline 0 \sim 2 \\
\hline
\end{array}
$$

0 : start from the first stage
The driver restarts from the first stage of PLC after interrupts, such as stop command, fault or poweroff. 1: continue from the stage where the driver stops

Wher the driver stops anel by stop command, fault or poweroff, it can record the time that it has undergone in the current stage. After restart, it will ruil at the preset frequency of the stage for the remaining time of the stage, iin Fig. F9-4 shows.

2: start from the frequency where it stops (fault)

When the driver stops caused by stop command, fault or poweroff, it can record both the time it has undergone in the current stage and the very frequency when the driver stops. After restart, it will pick up the recorded frequency and rum for the remaining time of the stage. See Fig. F9-5.

Stopping Signal

[D] Notice:

The difference between PLC start mode 1 and mode 2 is that in mode 2 , the driver can record the operating frequency when

 the driver stops and continue to operate at the recorded frequency after restart.| F9.05 | Unit of PLC operating time | |
| :---: | :---: | :---: |
| | 0~1 | 0 |
| 0: s | | |
| 1: m | | |
| F9.06 | Multi-speed freq. 0 | |
| | -upper limit ~ upper limit | 5.00 |
| F9.07 | Multi-speed freq. 1 | |
| | -upper limit \sim upper limit | 10.00 |
| F9.08 | Multi-speed freq. 2 | |
| | -upper limit \sim upper limit | 15.00 |
| F9.09 | Multi-speed freq. 3 | |
| | -upper limit \sim upper limit | 20.00 |
| F9.10 | Multi-speed freq. 4 | |
| | -upper limit \sim upper limit | 25.00 |
| F9.11 | Multi-speed freq. 5 | |
| | -upper limit \sim upper limit | 30.00 |
| F9.12 | Multi-speed freq. 6 | |
| | -upper limit ~ upper limit | 40.00 |
| F9.13 | Multi-speed freq. 7 | |
| | -upper limit ~ upper limit | 50.00 |
| F9.14 | Multi-speed freq. 8 | |
| | -upper limit \sim upper limit | 0.00 |
| F9.15 | Multi-speed freq. 9 | |
| | -upper limit \sim upper limit | 0.00 |
| F9.16 | Multi-speed freq. 10 | |
| | -upper limit \sim upper limit | 0.00 |
| F9.17 | Multi-speed freq. 11 | |
| | -upper limit ~ upper limit | 0.00 |
| F9. 18 | Multi-speed freq. 12 | |
| | -upper limit ~ upper limit | 0.00 |
| F9.19 | Multi-speed freq. 13 | |
| | -upper limit ~ upper limit | 0.00 |
| F9.20 | Multi-speed freq. 14 | |
| | -upper limit ~ upper limit | 0.00 |
| F9.21 | Multi-speed freq. 15 | |
| | -upper limit ~ upper limit | 0.00 |

The sign symbol of multi-speed frequency determines rumning direction, and minus mower miviil running. Input mode of frequency is set by F0.07=6, and start and stop command is set by F0.06

F9.22	Acc/Dec time of MS stage 1	
	$0 \sim 3$	0
	Run time of MS stage 0	
	$0.0 \sim 6553.5 \mathrm{~S}(\mathrm{M})$	0.0
F9.24	Ace/Dec time of MS stage 1	0
	$0 \sim 3$	0.0
F9.25	Run time of MS stage 1	
	$0.0 \sim 6553.5 \mathrm{~S}(\mathrm{M})$	0
F9.26	Acc/Dec time of MS stage 2	
	$0 \sim 3$	0

F9. 27	Run time of MS stage 2	
	$0.0 \sim 6553.5 \mathrm{~S}(\mathrm{M})$	0.0
F9.28	Acc/Dec time of MS stage 3	
	0~3	0
F9.29	Run time of MS stage 3	
	$0.0 \sim 6553.5 \mathrm{~S}(\mathrm{M})$	0.0
F9.30	Aco/Dec time of MS stage 4	
	0~3	0
F9.31	Run time of MS stage 4	
	$0.0 \sim 6553.5 \mathrm{~S}$ (M)	0.0
F9.32	Acc/Dec time of MS stage 5	
	0~3	0
F9.33	Run time of MS stage 5	
	$0.0 \sim 6553.5 \mathrm{~S}(\mathrm{M})$	0.0
F9.34	Aco/Dec time of MS stage 6	
		0
F9.35	Run time of MS stage 6	
	$0.0 \sim 6553.5 \mathrm{~S}$ (M)	0.0
F9.36	Acc/Dec time of MS stage 7	
	0~3	0
F9.37	Run time of MS stage 7	
	$0.0 \sim 6553.5 \mathrm{~S}(\mathrm{M})$	0.0
F9.38	Acc/Dec time of MS stage 8	
	0~3	0
F9.39	Run time of MS stage 8	
	$0.0 \sim 6553.5 \mathrm{~S}$ (M)	0.0
F9.40	Acc/Dec time of MS stage 9	
	0~3	0
F9.41	Run time of MS stage 9	
	$0.0 \sim 6553.5 \mathrm{~S}(\mathrm{M})$	0.0
F9.42	Acc/Dec time of MS stage 10	
	0~3	0
F9.43	Run time of MS stage 10	
		0.0
F9.44	Acc/Dec time of MS stage 11	
	0~3	0
F9.45	Run time of MS stage 11	
	$0.0 \sim 6553.5 \mathrm{~S}(\mathrm{M})$	0.0
F9.46	Acc/Dec time of MS stage 12	
	0~3	0
F9.47	Run time of MS stage 12	
	0.0~6553.5S(M)	0.0
F9.48	Acc/Dec time of MS stage 13	
	0~3	0
F9.49	Run time of MS stage 13	
	$0.0 \sim 6553.5 \mathrm{~S}(\mathrm{M})$	0.0
F9.50	Acc/Dec time of MS stage 14	
	0~3	0

F9.51	Run time of MS stage 14			0.0
	$0.0 \sim 6553.5 \mathrm{~S}(\mathrm{M})$	0		
	Acc/Dec time of MS stage 15			
	$0 \sim 3$	0.0		
F9.53	Run time of MS stage 15	$0 \sim 6553.5 \mathrm{~S}(\mathrm{M})$		
	$0.0 \sim 6$			

These above function codes are used to set Acc/Dec time and run time of multi-speed operation.
Acc/Dec time setting at 0 stands for Ace/Dec time 1 (F0.19~F0.20); Acc/Dec time setting at 1,2,3 stand for respectively
Acc/Dec time 2 (F1.13~F1.14) , 3(F1.15~F1.16), 4 (F1.17~F1.18)
Run time of of these 16 stages are set by run time of stage \mathbf{X} respectively (X:0~15)

$\square \square$ Notice

1: A stage is ineffective if its run time is set to 0 .
2: The control of PLC process including input, pause and reset can be realized via terminal. See function definition of $F 7$ Trimu

3: PLC operation direction is determined by plus/minus of frequency and operation command together. The running direction of motor can be changed by external command

F9.54	reserved	0
	reserved	0
F9.55	Traverse control	0
	$0 \sim 1$	

0: disabled
1: mabloll

1: terminal config. (manually)
When F9.56 is set at 1 , if multi-function terminal selects function NO.35, the driver will enter traverse mode. Otherwise, traverse is enabled.

```
F9.57 Amplitude control
    0~1
```

0 : fixed amplitude
The refrence value of amplitude is max, frequency F0.15.
1: varied amplitude
The refarence value of amplitude is specified channel frequency

F9.58	restart method of traverse mode	
	$0 \sim 1$	0

0 : start to the state before stop
1: just restart, no other requirement

F9.59	Save traverse state upon power failure		
	$0 \sim 1$	0	

0: save
1: not save
The traverse state parameters will be saved when poweroff. This function is only efliwew when "start to the tide before stop" mode is selected.

F9.60	Preset traverse frequency			
	$0.00 \mathrm{~Hz} \sim$ upper limit	10.00		

F9.61 | Preset traverse frequency hold time | |
| :--- | :--- |
| | $0.0 \sim 360$ |

These above function codes defined run frequency before entering traverse mode or when exiting traverse mode and hold time of the frequency. If $\mathrm{F} 9.61 \neq 0$, ther driver will run at preset traverse frequency when and enter traverse mode after preset traverse frequency hold time.

F9.62

Traverse amplitude

$$
0.0 \sim 100.0 \% \text { (of reference freq. }
$$

ference value of traverse amplitude is determined by $\mathrm{F9} .57$. If $\mathrm{F9.57}=0$, traverse amplitude $\mathrm{AW}=$ max.frequency ${ }^{*} \mathrm{~F} 9.62$; if F9.57=1, AW=reference*F9.62

[I] Notice:

1: the traverse frequency is limited by upper and lower limit of frequency. Improper setting of the frequency limit will result in faults.
2: the traverse is invalid for jog or PID control mode

\[

\]

This function code indicates the falling amplitude after reaching upper limit of frequency, or the rising amplitude after reaching lower limit of frequency.
If it is set at 0.0%, then there will be no step frequency.

F9.64	Traverse rising time		
	$0.1 \sim 3600.0 \mathrm{~s}$	5.0	
F9.65	Traverse falling time	5.0	
	$0.1 \sim 3600.0 \mathrm{~s}$	5	

These above function codes defined the time rising from lower limit to upper limit of frequency and falling from upper limit to lower limit.
Traverse function applies to textile and Anmith fiber industry, or others that requires hami mivatet or rolling. The typical application is shown in Fig. F9-6
The driver accelerates to preset traverse frequency (P9.60) and stay at it for a period of time (F9.61). Next, it will arrive at central frequency withim Acc time, and then it will operair according to traverse amplitude ($F 9.62$), hopping frequency (F9.63), rise time (F9.64) and fall time (F9.65) wire cycle after another until the stop then is received. It will then decelerate to stop within Dec time.

Fig.F9-6 Traverse Operation

LI]Note:

1: the central frequency is the frequency of digital setting, analog setting, impulse, PLC or MS running,
2: the traverse is invalid for jog or closed loop ruming.
3: when both PLC and traverse are enabled, the traverse is invalid when transferring to another PLC stage. The cutput frequency begins to traverse after arriving at the PLC preset frequency within Aco/Dec time. When receiving stop command, the driver will stop according to PLC Dec time.

F9.67	Length contral	
	$0 \sim 1$	0

0: disabled

1: mile

F9.68	Preset length	
	$0.000 \sim 65.535(\mathrm{KM})$	0.000
F9.69	Actual length	
	0.000~65.535(KM)	0.000
F9.70	Length factor	
	$0.100 \sim 30.000$	1.000
F9.71	Length calibration	
	$0.001 \sim 1.000$	1.000
F9.72	Shaft circumference	
	$0.10 \sim 100.00 \mathrm{CM}$	10.00
F9.73	Pulse per revolution (X6)	
	$1 \sim 65535$	1000

These above parameters are used for length control.
The counting pulse is input from terminal X6 defined as function NO.53. The length is calculated based on F9.73 and F9.72. Calculated length=number of counting pulse:number of pulse per revolution \times shaft circumference
After correcting the calculated length by F9.70 and $\mathrm{F9.71}$, the actual length is obtained.
Actual length $=$ calculated length $\times \mathrm{F} 9.70 \div \mathrm{F} 9.71$
When the actual length (F9.69) \geq preset length (F9.68) , the driver will stop automatically. You must clear the actual length record (F9.69) record or modify the setting of it to a value smaller than preset length (F9.68), or the driver cannot be started.

[] Note:

The actual length can be cleared by multi-fumction input terminal (set the corresponding parameter at function NO. 46) if the terminal is enabled. The actual length and pulse number can be calculated only after this terminal is disconnected Actual lenoth (F9.69) will be seved automatically after power off
Function of stop at fixed length is disabled if F 9.68 is set to 0 , but the calculated length is still effective.
Application of stop at fixed length:

Fig. F9-7 Application of Stop at Fixed Length
In Fig. F9-7, the driver drives the motor, and the motor, in turn, drivers the spindle through the belt. The shaft that contact
 driver will calculate the length based on the number of pulses it received. When the actual length $>$ preset length the driver will give stop command automatically to stop the spiming.

FA Protection Parameter

0 : disabled
Without overload protection (use with caution).
1: comman motor (thermal relay, low speed compensation)
Since cooling conditions of common motor deteriorates at low speed, the motors thermal protection threshold should also be adjusted. The "low speed" here refers to the operating frequency lower than 30 Hz , with which the motor will be lowered of the overloed protection threshold.
2: variable frequency motor (thermal relay, without low speed compensation)
The cooling effect of variable frequency motor is not affected by the motors speed, so low speed compensation is not necessary.

Fig. FA-2 Motor Overload Protection Factor Setting
The factor is calculated by the furmula below:

$$
\begin{aligned}
& \text { Motor overload } \\
& \text { Protection coefficient }
\end{aligned}=\frac{\text { allowed max load current }}{\text { inverter's rated outpul current }}<100 \%
$$

Generally, the max. load current is the motors rated current

1: allowed (under voltage is seen as fault)

FA. 03	Undervoltage protection level			
	$220 \mathrm{~V}: 180 \sim 280 \mathrm{~V}$	200 V	Depending on	
	$380 \mathrm{~V}: 330 \sim 480 \mathrm{~V}$	350 V	model	

This function code specifies the lower limit of DC bus voltage when the driver operates normally.
$\widehat{N}_{\text {Notlce }}$
When the network voltage is low, the output torque of motor will decrease. In conditions of constant power load and constant torque load, the low network voltage will increase the input an output current of VFD, so as to lower the reliability of VFD operation. Therefore the VFD need to run in derated capacity when the networi voltage is quite low for long term.

FA. 04	Overvoltage limit level				Depending
	$220 \mathrm{~V}: 350 \sim 390 \mathrm{~V}$	$\mathbf{3 7 0 V}$	on model		
	380V: $550 \sim 780 \mathrm{~V}$	660 V			

This parameter defines the action voltage of stall overvoltage protection.

FA.05	voltage limit factor in decelerating		
	$0 \sim 100 \quad 0:$ overvoltage stall protection invalid	Depending on model	

During decelerating, the larger of this value, the stronger of the overvoltage suppressing ability.

FA. 06	Current limit threshold (only valid in V/F mode)	
	$\begin{aligned} & \text { G type: } 80 \% \sim 200 \%{ }^{*} \text { VFD rated current } \\ & 160 \% \\ & \text { P type: } 80 \% \sim 200 \% * V F D \text { rated current } \\ & 120 \% \end{aligned}$	Depending on model

This parameter defines auto current limiting threshold, and the set value is the percentage relative to the rated current of VFD.
Notice:
In the normal VF mode, FA. 06 is used for amplitude limiting during accelerating or constant speed running, in Vector VF
mode, FA. 06 is used for amplitude limiting during accelerating, and no such limit process during constant speed running; in
vector mode, the amplitude limit during constant speed running is only related to F4.20 \sim F4.21

FA. 07 | current limiting in field weakening region | |
| :--- | :--- |
| | $0 \sim 1$ |

0 : limited by current limiting threshold of FA. 06.
When output frequency is within $50 \mathrm{~Hz}, \mathrm{FA} .06$ is used for amplitude limiting
1: limited based on corrected current from FA. 06
When output froquency is above 50 Hz , amplitude limiting is processed based on comrected current from FA.06.

FA. 08	Current limit factor in accelerating		
	$\mathbf{0}$: currend limit of accelerating	Depending on model	

During accelerating, the larger of this value, the stronger of the overcurrent suppressing ability.

\[

\]

0 : disabled
1: enabled

FA.10		
	Orl load detection time	
	$0.1 \mathrm{~s} \sim 60.0 \mathrm{~s}$	5.0
FA.11	Or load detection level	0.0%
	$0.0 \sim 100.0 \% \%^{*}$ rated curent of VFD	

0: off load detection disabled
Off load detraction level (FA.10) defines the current threshold of off load action, and the set value is the percentage relative to rated current of the VFD.
Off load time (FA.10) defines the lasting time that the driver output current is lower than off loed detection level (FA.11) continuously, after which the off loed signal is sent.
Off load status valid means that the operating current of the driver is lower than off load detection level and the lasting time exceeds off load detection time.

Overload pre-alarm level		
G type: $20 \% \sim 200 \% *$ VFD rated current		
160%	Depending	
P type: $20 \% \sim 200 \% *$ VFD rated current	on model	
120%		

Overload pre-ularm function is mainly used for monitoring overload condition before overload protection action. Overioad pre-alarm level delines the curterit threshold of overload pre-alarm action, and the sel value is the percentage relative to the rated current of VFD.

\[

\]

\square
This parameter defines the delay time from the time when the output current of VFD is higher than the overload pre-alarm level (FA.12) to the time when overloed pre-alarm signal is sent.

With the setting of parameter FA. 12 and FA. 13, when the output current of the driver is higher than overioad pre-alarm level FA. 12), the driver will send pre-alarm signal after delay tirne (FA.13), i.e. the control panel will display "A-09".

FA. 14 Temperaure detection threshold

FA. 15	Phase loss protection of input/output	
	$\mathbf{0 \sim 3}$	Depending on model

0. both invalid

1: invalid for input, valid for output
2: valid for input, invalid for output
3: both valid
Factory default 1 for VFD under 7.5kW, factory default 3 for VFD above 11 kW .
FA. 16

Delay time of input phase loss protection
$0.0 \mathrm{~s} \sim 30.0 \mathrm{~s}$

\square
\square
When input phase loss protection is valid, and input phase loss funit occurs, protection action " $\mathrm{E}-12$ " will be enabled after a period of time deतined by FA. 16 , and the driver will coast to stop.

\[

\]

When the VITD actual output current is higher than rated eurrent * 【FA.17】, if output phase loss protection is valid, uction E-13 will be enable after delay time of 5 s and the driver will coast to stop.

FA. 18 Detection factor of output current imbalance $1.00 \sim 10.00$ \square
If the ratio of the maximum value and minimum value of three phase output current is larger than this factor and last for over 10 seconds, the diver will display output current imbalance fault E-13. When FA.08=1.00, output current imbalance detection is invalid.

FA.19	reserved	0
	reserved	0
FA.20	PID feedback disconnection processing	
	$0 \sim 3$	0

0: no action

1: alarm and rua at frequency of disconnection moment
2. protection action and coast to stop

3: alarm and decelerate to zero-speed running according to set mode
 driver will respond with corresponding protection action.

FA. 22 Feedback disconnection detection time
The lasting time before protection action after feedback connection happened.

reserved	0
Action of RS485 communication error	
0～2	1

FA． 24
0 ：protection action and coast to stop
1：alarm and maintain current operation
2：alarm and stop according to set mode
FA． 25

```
RS485 communication timeout detect
```

If RS485 didn＇t receive the right data signal within the defined time by this parameter，the RS 485 communication error is confirmed and the driver will respond with corresponding action based on FA． 24 settine The RS485 communication timeout detection will be disabled if this parameter is set at 0.0 ．

\[

\]

0 ：protection action and coast to stop
1：protection action and maintain the current operation
2：protection action and stop according to set mode

FA． 27
Operation panel communication timeout detect
$0.0 \sim 100.0 \mathrm{~s}$
If keypad communication didn＇t receive the right data signal during the time teltivit by this parameter，then keypad communication error is confirmed and the driver will respond with carresponding action based on FA． 26 setting．

FA． 28	$0 \sim 1$
$0:$ protection action and coast to stop	

1：alarm and keep on running

FA． 29	Output ground protection when power on（reserved）		
	$0 \sim 1$	0	

0 ：invalic
1：valid
FA． 30

\[

\]

0 ：protection action and coast to stop
1：alarm and decelerate to stop
2：alarm and keep on ruming

FA． 32	Overspeed detection time	
	$0.0 \sim 100.0 \mathrm{~s}$	5.0
FA．33	Action of big speed deviation（reserved）	
	$0 \sim 2$	0

0：protection action and coast to stop
1：alarm and decelerate to stop
2：alarm and keep on running

Detection value of too large speed deviation（reserved）

 $0.0 \sim 50.0 \%^{*}$ 【F0．15】 max．freq．| PA． 35 | Detection time of too latge speed deviation（reserved） | |
| :---: | :--- | ---: |
| | $0.0 \sim 100.0 \mathrm{~s}$ | 0.5 |

IE Commurbatin Furametor

FB． 00	Communication protocol	
	0～1	0
Communication protocol selection 0 ：woumit		
1：user－defined		
FB． 01	Local ad	
	0～247	1

0 ：broadcasting address
1～247：slave station
During 485 communication，the parameter can identify local driver＇s address．

\triangle Notice：

＂ 0 ＂is the broadcasting address．When it is set so，the slave can receive and execute the command by host，but will not enom bad：

FB． 02	Baud rate setting	
	$0 \sim 5$	3

0：2400BPS

2：Hatif
3．12．
4：14waipi
5：insuonrs
This function code is used to define the data transmission rate between host and VFD．The baud rate setting of host should be in accord with that of VFD，or the communication will go wrong．The larger of the baud rate，the quicker of the response，but too larger of the setting value may affect the communication stability．

\[

\]

0：no parity（ $\mathrm{N}, 8,1$ ）for RTU
1：even parity（ $\mathrm{E}, 8,1$ ）for RTU
2：odd parity（ $0,8,1$ ）for RTU
3：no parity（ $\mathrm{N}, 8,2$ ）for RTU
4：even parity（ $\mathrm{E}, 8,2$ ）for RTU

5: odd parity ($0,8,2$) for RTU
Notice: ASCII mode is reserved at present
The host should keep the same data format with the driver, or there will be fault for communication.

Response delay refers to the time from the driver receiving the command of the host to returning reply frame to the host. If the response time is shorter than system processing time, go with the system processing time. Otherwise, the system will send data to host after delay waiting time.
FB. 05 Transmission response \square
0: response to write operation
The driver will response to all read-write commands of host
1: not response to write operation
The driver will response to all read command of the host, but not to the write command, so as to improve communication efficiency.

Ratio correlation
$0.01 \sim 10.00$
1.00

This function code is used to set weight coefficient of frequency command received via RS485 when the driver is set as slave. The actual operation frequency is this parameter value multiplied by the anond value received via Bifili In jontly control, this function code can set rumning frequency ratio of multiple VFD.

FC. 00	Dynamic braking	
	$0 \sim 2$	2

0: disabled
1: matla
2: only enabled during decelerating

FC. 01	Initial voltage of dynamic braking		
	$\begin{aligned} & \hline 220 \mathrm{~V}: 340 \sim 380 \mathrm{~V} \\ & 380 \mathrm{~V}: \quad 660 \sim 760 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 360 \mathrm{~V} \\ & 680 \mathrm{~V} \end{aligned}$	Depending on model
FC. 02	Hysteresis voltage of dynamic braking		
	$\begin{aligned} & 220 \mathrm{~V}: 10 \sim 100 \mathrm{~V} \\ & 380 \mathrm{~V}: 10 \sim 100 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 5 \mathrm{~V} \\ & 10 \mathrm{~V} \end{aligned}$	Depending on model
FC. 03	Action ratio of dynamic braking		
	Action ratio of dynamic braking $10 \sim 100 \%$ 100%		

These above function codes are used to set voltage threshold of the action, backlash voltage and usage rate of brake unit. If the internal DC side voltage is higher than the initial voltage of dynamic braking, the internal brake unit will act. If there is brake resistor connected, the pumping voltage energy will be released via the brake resistor to achieve drop of DC voltage. When the DC side voltage falls to a specific value (initial value-brake hacklash), the internal brake unit will close.

FC. 04

```
Restart after power failure
|\mp@code{O~2} 0
```

0 : disabled
The driver will not auto restart after power on.
1: start at start frequency
After power on, if start condition is met, the driver will auto start at start frequency after a period of time specified by FC. 05 .
2: start in speed tracking mode
After power on, if start condition is met, the driver will auto start in speed tracking mode after a period of time specified hy FC. 05 .

\[

\]

\square
In this delay time, any command input is invalid. If stop command is input, the driver will auto unlock speed tracking restart status and back to normal stop status.

. Notice:

1: FA. 02 needs to be set at 0 to ensure the restart after power off is valid
2: this parameter may cause unexpected start of motor and bring damage to equipment and people, be cautious to use it.

FC. 06	Auto reset times	
	$0 \sim 100$	0
FC. 07	Auto reset interval	
	$0.1 \sim 60.0 \mathrm{~s}$	3.0

100: no times limit, i.e. infinite times
When fault occurs during operation, the driver will stop output and display fault codes. After a period of time specified by FC .07 , the driver will auto reset and restart according to set start mode.
The auto reset times after fault occurring is specified by FC. 06 . When it is set at 0 , auto restart function will be disabled and the driver can only he reset mamually. When FC. 06 is set at 100 , there will he no limit for reset times. For IPM fault, external fault, etc., auto reset function of the driver is not allowed

FC. 08	Cooling fan control	
	$0 \sim 1$	0

1: operation all the way during power on

FC. 09	Password of operation limit function	
	$0 \sim 65535$	0

For this password setting input five-digit number and presthe password will take into effect after one minute later
When there is a need to modify the password, choose FC. 09 function code, press ENTER to enter verification status. After successful authentication, enter modify status and input the new password, press ENTER, and the password is modified successfully. One minute later, Det password nill the into athat automatically. For clear password, just set it at successfil

FC. 10	Operation limit function	
	$0 \sim 1$	0

0 : disabled
1: enabled
During operation limit, as long as the total operation time exceeds the time specified by FC.11, the driver will respond with protection action and coast to stop, and the keypad displays E-26 (RUNLT). To clear this fault, just very FC. 09 right and set FC. 10 at " 0 " (disabled).

TH1	1 morthar	
	0-6854	0

Note: the parameter can be resel, see descripton of r C. 09.

FC. 12	Freq. decreasing point of transient power failure		
	$220 \mathrm{~V}: \quad 180 \mathrm{~V} \sim 330 \mathrm{~V}$	250 V	Depending
	$380 \mathrm{~V}: \quad 300 \mathrm{~V} \sim 550 \mathrm{~V}$	450 V	on model

If the driver bus voltage decrease to lower than FC.12* rated bus voltage, and

If the driver bus voltage decrease to lower than FC.12* rated bus voltage, and the function of immunity to transient power failure is enabled, the corresponding action will start.

FC. 13	Frequency decreasing factor of transient power failure		
	$1 \sim 100 \quad 0:$ function disabled of immunity to transient power failure	0	
	Droop control		
	$0.00-100014$	D而	

.00. doup contol linctun disabied
When multiple drivers are driving the anne one load, the speed difference will cause unbalance ththathe of load, whel will result in too much load to the driver with higher speed. The droop control is to make speed troop changing with the increase of the load, so the to equalizing load distribution. This parameter is to adjust frequency variation of frequency drooping driver.
When $\mathrm{F} 0.18=1$ (high frequency mode), the upper limit of this parameter is 100.0 Hz

FC. 15	delay time of rotating speed tracking	
	$0.1 \sim 5.0 \mathrm{~s}$	1.0

FC. 16	Current amplitude limiting of rotating speed tracking		
	$\mathbf{8 0 \%} \sim \mathbf{2 0 0} \%^{*}$ rated current of VFD	Depending on model	

This function code is used for auto current amplitude limit during rotating speed tracking. When actual current amrives at the threshold (F..16), the driver will decrease frequency and limit current, then go on with tracking acceleration; the set value is the percentage related to rated current of the driver.

\[

\]

faster of the tracking. But too fast of the tracking may cause it unreliable

Tru4 mod	
$0000 \sim 1311$	Depolirt

LED ane's place: PWM synthesize method

: seven segments of full band

Current cutput is stable, power tube of full band produces a large amount of heat.
: switch form 7 segments to five segments
Current output is stable, heat procuction is large for power tube of low frequency, and small for that of high frequency.
ED ten's place: PWM temperature correlation
0 : tobled
1: emabled
If this function is enable, when the temperature of heat sink arrives at alarm value ($50^{\circ} \mathrm{C}$), the driver will decrease its carrier frequency automatically until the temperature back to lower than the alarm value.
LED hundred's place: PWM frequency correlation
0: tmind
1: low frequency adjustment, high frequency adjustment
2: no adjustment for low frequency, high frequency adjustment
3: low frequency adjustment, no adjustment for high frequency
When Tem is antilal with temperature, and the temperature of heat sink arrives at alarm value ($50^{\circ} \mathrm{C}$), if low frequency and high frequency are not adjusted, carrier frequency will remain unchanged; otherwise, the driver will decrease carriar frequency automatically.
IKD thousand's place: flexible PWM function
0: linktid
1: Eleler
When this function is enabled, PWM method will be modified to reduce electromagnetic interference and motor noise.

Fer	Wursmodr	
	0000-0112	0109

LeD ond i pluen wr fundion

0: disabled
: always enabled
2: disabled during decelerating
AVR menai auto voltage regulation. When the input voltage of the driver deviates from its rated value, this function is used to maintain the output voltage iventan to protect the motor from working in overvoltage status. This function is disabled when output command voltage is higher than input power voltage. If AVR is disabled during decelerating, the Dec time is shorter but the current is higher, other, the motor decelerates smoothly with lower current, but the Dec time is longer.

LED ten's place: ofrmed iotix
Fig. FC-2 AVR Function

0 : Anblat

, enabled
Overmodulation function means that the driver will boost its bus voltage usage rate to increase output voltage. When it is enabled, the output harmonic component will increase. This function can be used when the driver works with a beavy load fir a long time or high frequency (over 50 Hz) operation torque is insufficient

LED hundred's place: dead-time compensation
0 : disabled
1: enabled
If it is enabled, dead time compensation of all band will be conducted in all control modes. This function is mainly for manufacturer debugging, and not recormmended to set by customers.
LED thousand's place: harmonic components optimizing (reserved)
0 : disabled
1: enabled

FC. 20	Oscillation suppressing factor	
	$0.00 \sim 300.00$	0

FC. 21 Flux braking
This parameter is used to adjust the flux braking ability during decelerating. The larger of the value, the stronger of the flux braking ability, and the shorter of the decelerating time. Normally there is no need to set it. This function is disabled if the parameter is set at 0 .
When overvoltage limit level is low, this function can help reducing decelerating time. Otherwise there is no need to open this function.

```
FC. }22\mathrm{ Energy saving control factor
0~100
0
```


The larger of the selting value, the better of the energy saving effect, but may cause unstable operation. This function is only valid for V / F control mode, and is disabled when set at 0 .

FC. 23	MS priority	
	$0 \sim 1$	0

0: disabled
1: MS prior to $\mathrm{F0.07}$ setting.

FC. 24	Jog priority	
	$0 \sim 1$	0

0: disabled
1: the jog bas the highest priority during the driver operation.

FC. 25	Special function	
	$0000-0001$	1000

LED one's place: 102 and D0 output selection
0: A02 enabled
1: D0 enabled
LED ten's place: eserved
LED hundred's place: reserved
LED thousand's palce: reserved

FE Panel Function Setting and Parameter Management (PD groap reserved)

FE. 00

LCD language option (LCD)
$0 \sim 2$

\square
0: Chinese
1: English
2: reserved

FE. 01

0: JOG (jog cantrol)
M FUNC key is for jog control, and the default direction is set by fo. 21.
1: FWD/REV switch
(FINC) equals direction switch key in running status, and is disabled in stop status. This switching is only effective to command giving method of keypad.
2: clear frequency set hy \boldsymbol{A}

FE. 02	KeySTOP/RST function	
	$0 \sim 3$	3

0: oniy effective to panel control
Only when F0.06 $=0$, this key can control the driver to stop.
1: effective to botb panel and terminal control
Only when $\mathrm{F} 0.06=0$ or 1, can this key conlrol the driver to stop. In the contmunication control mode, this key is invalid
2: effective to both panel and communication control
Only when $\mathrm{F} 0.06=0$ or 2 , can this key control the driver to stop. In terninal control mode, this key is invalid.
3: effective to all control modes
This key can control the driver to stop in all control modes.

$\square_{\text {Notico }}$

In all command giving methods, reset function is enabled.

PE. 03	STOP + RUN emergency stop	
	$0 \sim 1$	1

0 : disabled
1: coast to stop
Press RUN and siop/RRSET, the driver will coast to stop.

\[

\]

This fimction code is used to calibrate the error between the actual parameters (pressure, flow rate, etc.) and preset or feedback parameters (voltage, current). It has no effect on close-loop regulation.

FE. 05 Rotating speed display factor $0.01 \sim 100.00$ 1.00

FE. 06	Line speed factor	
	$0.01 \sim 100.00$	1.00

FE. 07	Encoder regulation speed	
	$1 \sim 100$	70
FE. 08	Monitoring parameters selection 1 in operation status	
	$0 \sim 57$	0
	Monitoring parameters selection 2 in operation status	
	$0 \sim 57$	5

The items of main monitoring interface can be changed by modifying the set velue of the above function codes. For example: set PE.08-5, then output current d-05 is selected, and the monitering inurfince will display the present output currem as deliull during operation.

FE. 10	Monitoring parameters selection 1 in stop status		
	$0 \sim 57$	1	
	Monitoring parameters selection 2 in stop status		
	$0 \sim 57$	12	

The items of main monitoring interface can be changed by modifying the set value of the above function codes．For example： set FE． $10=$ ，then output current $\mathrm{d}-06$ is selected，and the monitoring interface will display the present output voltage as default during stop status．

FE． 12	Parameter display mode	
	$00 \sim 11$	00

LED one＇s place：function parameters display mode
0 ：display all function parameters
1：only display parameters different from default value．
2：only display parameters modified after power on of the last time（reserved）
LED ten＇s place：monitoring parameters display mode
0：only display main monitoring parameters
1：alternate display of main and auxiliary parameters（interval time 1s）
LED hundred＇s place and thousand＇s place：reserved

FE． 13

Parameter initialization
$0 \sim 3$

0：disabled

The driver is in normal read and write witil．Whether the setting value of function codes can be modified is relevant to the

3：atrer furl woont
Clear the contents of fault record D－48～D－57．After this operation，this function code will clear to 0 aut omatically．

FE． 14	write－protect	
	0～2	0
0：allow all parameters to be modified（some are not during operation） only allow F0．12，F0． 13 and FE． 14 to be modified 2：only allow PE． 14 to be modified		
FE． 15	Parameter copy function	
	0～3	0

0：disabled
1：parameters upload to operation panel
If it is set at 1 and confirmed，the driver will display CP－1，and upload all function code parameters from control panel to EEPROM in operation panel for storage．
2：all fumction code parameters download to the driver
If it is set at 2 and confirmed，ilw bive will therer，and download all function code parameters from operation panel

If it is set at 3 and mertirast the keypad will display CP－3，and the driver will download all function code parameters （except motor parameters int factory parameters）from operation panel to miniry in main control panel，and iptin） EEPROM

Monitoring Parameter

d－00	Output frequency（before slip compensation）	
	$0.00 \sim$	

| $0.00 \sim$ max．output freq．【F0．15】 | 0.00 |
| :--- | :--- | :--- |

d－01

Output frequency（after slip compensation） | $0.00 \sim \max$ ．output freq．【F0．15】 | 0.00 |
| :---: | :---: |

d－02	Estimated Motor Frequency	
	$0.00 \sim \max$ ．output freq．【F0．15】	0.00
d－03	Main Set Frequency	
	$0.00 \sim \max$ ．output freq．【F0．15】	0.00
d－04	Auxiliary Set Frequency	
	$0.00 \sim \max$ ．output freq．【F0．15】	0.00
d－05	Output Current	
	$0.0 \sim 6553.5 \mathrm{~A}$	0.0
d－06	Output Voltage	
	0～999V	0
d－07	Output Torque	
	－200．0～＋200．0\％	0．0\％
d－08	Motor Revolving Speed（RPM／min）	
	0～36000RPM／min	0
d－09	Motor Power Factor	
	0．00～1．00	0.00
d－10	Rum Linear Velocity（ m / s ）	
	$0.01 \sim 655.35 \mathrm{~m} / \mathrm{s}$	0.00
d－11	Set Linear Velocity（m／s）	
	0．01～655．35m／s	0.00
d－12	Bus voltage（V）	
	0～999V	0
d－13	Input Voltage（V）	
	0～999V	0
d－14	PID Set Value（V）	
	$0.00 \sim 10.00 \mathrm{~V}$	0.00
d－15	PID Feedback（V）	
	$0.00 \sim 10.00 \mathrm{~V}$	0.00
d－16	Analog Input AI1	
	$0.00 \sim 10.00 \mathrm{~V}$	0.00
d－17	Analog Input AD2	
	$0.00 \sim 10.00 \mathrm{~V}$	0.00
d－18	Impulse Frequency Input	
	$0.0 \sim 50.0 \mathrm{kHz}$	0.00

d-49	The secand to last fault type	
	0~30	0
d-50	Last fault type	
	0~30	0

d-51	Current fault type	
	$0 \sim 30$	0

d-52

Run frequency of current fault		
$0.00 \sim 【$ F0.16】 upper limit freq.	0.00	

d-53	Output current of current fault
	$0.0 \sim 6553.5 \mathrm{~A}$

Busbar voltage of current fault	
$0 \sim 999 \mathrm{~V}$	0

d-55	Input terminal status of current fault		
	$0 \sim$ FFH	0	
d-56	Output terminal status of current fault		
	$0 \sim \mathrm{FH}$	0	

Run state of current fault $0 \sim$ FFFFH

0

5 Communication Protoco

When controller communicates via Modbus in RTU mode, each byte is divided into 2 hexadecimal characters of 4 bits. The main ilvurapt of this mode is that it in transfer it metare with bigher density compared with ASCII mode given the

1) reblythivneliturwol

Finodiup ryterim 8 bits binary, hexadecimal 0-9, A-F.
Data bits: 1 bit of start bit, 8 bits of data (send from the lower bit), 1 bit of stop hit, optional parity check bit (refer to hit sequence of RTU data frame).

Error check zone: cyclic redundancy check (CRC).
2) Bit sequence of RTU data frame
With parity check

Start	1	2	3	4	5	6	7	8	Par	Stop
Without parity check										
Start	1	2	3	4	5	6	7	8	Stop	

5.2 Register Address and Function Code

1) supported function code

Function code	Function description
03	Read multiple registers
06	Write single register
10	Write multiple registers continuously
13	Read single parameter
2) register address	
Register function	Address
Control command input	0×2000
Read monitor parameter	0xD000 (0x1D00) $\sim 0 \times D 039$ (0x1D39)

MODBUS frequency setting	0×2001
MODBUS torque setting	0×2002
MODBUS PID frequency given	0×2003
MODBUS PID feedback setting	0×2004
Parameter setting	$0 \times 0000 \sim 0 \times 0 \mathrm{~F} 15$

3) 03 H read multiple parameters (8 items continuously at most)

Inquiry information frame format (send frame) :

Address	01 H
Function	03 H
Starting drata address	00 H
	$\mathbf{0 1 H}$
Number of Data(Byte)	00 H
	$\mathbf{0 2 H}$
CRC CHK High	95 H
CRC CHK Low	CBH

Analysis of this segment data:
01 H is the address of the driver
03 H read function code
0001 H is start address, equivalent to FO .01 of control panel
0002 H is item count of menu, i.e. the two items of F0.01 and F0.02
? Stisi 16 bits of CRC check code
Response information frame format (return frame) :

Address	01H
Function	03H
DataNum*2	04H
	00H
Datal [2Byte]	64H
Data2[2Byte]	00H
Data2[2Byte]	64H
CRC CHK High	BAH
CRC CHK Low	07H

Analysis of this segment data:
01 H is the address of the driver
03H read function code
04 H is the product of (read item)*2
WenH read the data of F 0.01
Towill read the data of F0.02
BAOTH is 16 bits of CRC check code

run status description of the driver)
Read fault code E-19 (adtress E 000 H and tubit interchangeable, refer to the fault code table)
Read pre-alarm code A-18 (address E001H and 1E01 interchangeable, refer to the pre-alarm code table)

Send frame: $\quad 01 \mathrm{H} \quad 03 \mathrm{H} \quad 1 \mathrm{~A} 00 \mathrm{H} \quad 0001 \mathrm{H} \quad 8312 \mathrm{H}$ Return frame: $01 \mathrm{H} \quad 03 \mathrm{H} \quad 02 \mathrm{H} \quad 0040 \mathrm{H} \quad \mathrm{B} 9 \mathrm{~B} 4 \mathrm{H}$ Send frame: $001 \mathrm{H} \quad 03 \mathrm{H} \quad \mathrm{E} 000 \mathrm{H} \quad 0001 \mathrm{H} \quad \mathrm{B} 3 \mathrm{CAH}$ | Return frame: | 01 H | 03 H | 02 H | 0013 H | F 989 H |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Send frame: $01 \mathrm{H} \quad 03 \mathrm{H} \quad 1 \mathrm{EOOH} \quad 0001 \mathrm{H} \quad 8222 \mathrm{H}$ Return frame: $01 \mathrm{H} \quad 03 \mathrm{H} \quad 02 \mathrm{H} \quad 0013 \mathrm{H} \quad \mathrm{F} 989 \mathrm{H}$ Send frame: 01 H 03H E001H 0001H E20AH Return frame: $01 \mathrm{H} \quad 03 \mathrm{H} \quad 02 \mathrm{H} \quad 0012 \mathrm{H} \quad 3849 \mathrm{H}$ Send frame: $001 \mathrm{H} \quad 03 \mathrm{H} \quad 1 \mathrm{E} 01 \mathrm{H} \quad 0001 \mathrm{H} \quad$ D3E2H Retum frame: $01 \mathrm{H} \quad 03 \mathrm{H} \quad 02 \mathrm{H} \quad 0012 \mathrm{H} \quad 3849 \mathrm{H}$

4) 06 H write single parameter

Inquiry information frame format (send frame) :

Address	01 H
Function	06 H
Starting data address	20 H
	00 H
Data(2Byte)	00 H
	01 H
CRC CHK Low	43 H
CRC CHK High	CAH

Analysis of this segment data:
01 H is the address of the driver
4dil write function code
werl is the address of control command
0501H is forward command
43 AlH is 16 bits of CRC check code
Response information frame format (return frame) :

Address	01 H
Function	06 H
	$\mathbf{2 0 H}$
	00 H
	$\mathbf{0 0 H}$
CRC CHK High	$\mathbf{0 1 H}$
CRC CHK Low	$\mathbf{4 3 H}$

Analysis of this segment data: if set right, return the same input data

5) 10 H write multiple parameters continuously

Inquiry information frame format (send frame) :

Address	01 H
Function	10 H
Starting data address	01 H
	00 H
Number of Data(Byte)	00 H
	02 H
DataNum 2	04 H
Data1(2Byte)	00 H
	01 H
Data2(2Byte)	00 H
	CRC CHK High

Analysis of this segment data
01 H is the address of the driver
10 H write function code
0ith start address, equivalent to F 1.00 of control panel
owath amount of registers
04H bytes sum (2*register amount)
toplli data of F1.00
70민) data of F1.01
2月4내․ 16 bits of CRC check code

Response information frame format (return frame) :

Address	01 H
Function	10 H
Starting data address	01 H
	00 H
Number of Data(Byte)	00 H
	02 H
CRC CHK High	40 H
CRC CHK Low	34 H

Analysis of this segment data

01 H address of the driver
 10 H write function code
 Fluill write data of F1.00
 0004 item count of write menu, i.e. two items of F1.00 and F1.01
 44H 16 bits of CRC check code

Name	Frame format								
Set F1.00, F1.01 at 1 and 0.02 respectively	Send frame:	01H	10H	0100H	0002H	04H	0001H	0002H	2E3EH
	Return frame	01H	10H	0100H	0002H	4034H			
Forward and communicate reference frequency at 50 HZ	Send frame:	01H	10H	2000H	0002H	04H	0001H	1388H	36F8H
	Retumn frame	01H	10H	2000H	0002H	4A08			
Set F1.00 at 1	Send frame:	01H	10H	0100H	0001H	02H	0001H	7750H	
	Return frame	01H	10H	0100H	0001H	0035H			

6) 13 H read single parameter (including attribute, min value, max.value)

Inquiry information frame format (send frame) :

Address	01 H
Function	$\mathbf{1 3 H}$
Starting data address	$\mathbf{0 0 H}$
	$\mathbf{0 C H}$
Number of Data(Byte)	$\mathbf{0 0 H}$
CRC CHK High	$\mathbf{0 4 H}$
CRC CHK Low	$\mathbf{4 5 H}$

Analysis of this segment data:
01 H address of the driver
13 H read function code
wailf start address, equivalent to F 0.12 of control panel
04-4I register amoumt
44CIII 16 bits of CRC check code
Inquiry information frame format (return frame) :

Address	01 H
Function	$\mathbf{1 3 H}$
Starting data address	$\mathbf{0 0 H}$
	$\mathbf{1 2 H}$
Data1(2Byte)	$\mathbf{1 3 H}$
Data2(2Byte)	$\mathbf{8 8 H}$
	$\mathbf{0 3 H}$
Data3(2Byte)	$\mathbf{2 2 H}$
	$\mathbf{0 0 H}$

	88 H
CRC CHK High	28 H
CRC CHK Low	31 H

Analysis of this segment data:
01 H address of the driver
13 H write function code
aryill start address, equivalent to F 0.12 of control panel
1388 H parameter value
pant atribute value
moull min.value
1388H max.valu
2831H 16 bits of CRC check code

function	address			
VFD operation status	$\mathrm{A0OOH}(1 \mathrm{~A} 00 \mathrm{H})$	byte	bit	meaning
		Byte1	Bit7	0: no action 1: overload pre-alarm
			Bit6~Bit5	0:INV 220V 1:INV 380V 2:INV 660V 3: $\mathrm{NV}^{-1140 \mathrm{~V}}$
			Bit4	0 : no action 1: power off save
			6if	0: no action 1: reset
			Bit2~Bit1	0: no action 1: static turning 2: dynamic tuning

5.4 Fault Code:		
Fault code	Displayed code	Fault information
9000\|	-	No fault
0001H	E-01	Overcurrent when accelerating
600]ti	E-02	Overcurrent when decelerating
6erili	E-03	Overcurrent at constant speed
	E-04	Overvoltage when accelerating
(00051	E-05	Overvoltage when decelerating
6meth	E-06	Overvoltage at constant speed
6) ${ }^{\text {a }}$	E-07	Bus undervoltage
60081	E-08	Motor overload
60p/	E-09	Driver overload
cowill	E-10	Driver off load

Wosrut	E-11	Function module fault
000다	E-12	Input phase loss
(9yHㅐ	E-13	Output phase loss or current unbalance
Nor	E-14	Short circuit of output to earth
P90]	E-15	Heatsink overheat 1
mial	E-16	Heatsink overheat 2
0011H	E-17	RS485 communication fault
0012H	E-18	Keypad communication fault
0013H	E-19	External device fault
0014H	E-20	Current detection fault
0015H	E-21	Motor tuning fault
0016H	E-22	EEPROM read-write fault.
0017H	E-23	Parameters copy fault
EPIII	E-24	
c015\%	E-25	Voltage feedback disconnection
01.nH	E-26	Arrival of operation limit time
001BH	E-27	Coprocessar communication fault
001CH	E-28	Encoder disconnection fault
自地	E-29	Speed deviation too much
WILA	E-30	Over-speed fault

Alarm code	displayed	Fault information
jupuit	-	No fault
59714	A-09	Driver overload alarm
0011H	A-17	RS485 communication fault alarm
0012II	A-18	Keypad communication fault alarm
busis	A-21	Motor tuning alarm
0016H	A-22	EEPROM read-write fault alarm
(9)17III	A-24	PID feedback disconnection alarm

address	bit	meaning
21001	Bit7~Bit5	reserved
	Bit4	0: no action 1: reset
	Bit3	0 : forward 1: frume
	Bit2~Bit0	100: free stop 011: stop 010: jog run 001: run

5.8 Error Code from Slave Response of Abnormal Information:

Error code	description
01 H	Invalid function code
$\mathbf{0 2 H}$	Invalid address
03 H	Invalid data
$\mathbf{0 4 H}$	Invalid register length
05 H	CRC validation error
06 H	Parameters can't be changed during running
07 H	The changes of parameters are invalid
08 H	Control command of host is invalid
$\mathbf{0 9 H}$	Parameter protected by password
$\mathbf{0 A H}$	Password error

5.9 Communication Address of all Parnmeters:

Function code	Communication address
F0.00~F0.22	$0000 \mathrm{H} \sim 0016 \mathrm{H}$
F1.00~F1.36	$0100 \mathrm{H} \sim 0124 \mathrm{H}$
F2.00~F2.17	$0200 \mathrm{H} \sim 0211 \mathrm{H}$
F3.00~F3.08	$0300 \mathrm{H} \sim 0308 \mathrm{H}$
F4.00~F4.24	$0400 \mathrm{H} \sim 0418 \mathrm{H}$
F5.00~F5.24	$0500 \mathrm{H} \sim 0518 \mathrm{H}$
F6.00~F6.35	$0600 \mathrm{H} \sim 0623 \mathrm{H}$
F7.00~F7.36	$0700 \mathrm{H} \sim 0724 \mathrm{H}$
F8.00~F8.20	
F9.00~F9.73	
FA. $00 \sim$ FA. 35	$0 \mathrm{~A} 00 \mathrm{H} \sim 0 \mathrm{~A} 23 \mathrm{H}$

FB.00~FB.06	$0 \mathrm{B00H} \sim 0 \mathrm{~B} 06 \mathrm{H}$
FC. $00 \sim$ FC. 25	$0 \mathrm{C} 00 \mathrm{H} \sim 0 \mathrm{C} 19 \mathrm{H}$
FE. $00 \sim$ FE. 15	$0 \mathrm{E} 00 \mathrm{H} \sim 0 \mathrm{E} 0 \mathrm{FH}$
FF. $00 \sim$ FF. 21	$0 \mathrm{~F} 00 \mathrm{H} \sim 0 \mathrm{~F} 15 \mathrm{H}$
$\mathrm{d}-00 \sim \mathrm{~d}-57$	D000H (1D00H) $\sim \mathrm{D} 039 \mathrm{H}$ (1D39H)

1) in the above examples, the driver address is 01 , which makes it better for illustration; when the driver is slave, the address setting range is $1 \sim 247$, and if any data of frame format is changed, the check code needs to be recalculated The calculating tools of lobit CRC check code can be intririniniminamet
2) Initial address of monitor item is D000, each item offset corresponding hexadecimal value based on this address, then
 $\mathrm{D} 000 \mathrm{H}(1 \mathrm{D} 00 \mathrm{H})$, now read monitor item d-18, $18-00=18$, the corresponding hexadecimal of 18 is 12 H , then the
 interchangeable.
3) Frame format when the slave response information is abnormal: driver address $+(80 \mathrm{H}+$ function code $)+16$ bit CRC check code; if the salve return frame is $01 \mathrm{H}+83 \mathrm{H}+04 \mathrm{H}+40 \mathrm{~F} 3 \mathrm{H}$, then 01 H is slave address, 83 H is Edetoh indicating read error, 04 H is invalid data length, 40 F 3 H is 16 bit CRC check code.

6 Troubleshooting

6.1 Fault information and Troublenhooting

Any abnormity occurs during operation, the driver will lock PWM output immediately and enter protection status. Meanwhile, the keypad will display function codes indicating the current fault, and the ALM indicator light will be on Follow the method described in Table 6-1 to check the fault cause and conduct according actions. If the problem remains, contact us directly.

Fua code	Fault dencriptions	Pextur nithit	Autien
E-01	Over-current in Acc process	Tbo short Asc time (including tuning process)	Prolong the Acc time
		Restart the rotating motor	Start after setting as DC brake, or rotational speed tracking start
		Drive power is too small	Select a higher power drive
		V/F curve is not suitable	Adjust V/F curve or torque boost
E-02	Over-current in Dec process	Too short Dec time (including tuning process)	Prolong the Dec time
		Too low driver's power	Select the drive with large capacity
		the load inertia is too high	Connect suitable braking resistor or braking unit

E－173	Over－aurent in coratant speod cperiatim	Law network volimge	Check the porwer supply
		Sudden change ir minormal of loed	Check the lood of reduce the thatige of the load
		Tos low divar＇s power	Selent the driver with largor capacity
E－04	Over yeltage in Acc： зтосев	Abractinal supply vollage （inchuding faning process）	Check the porwer supply
		The driver is reetarted with a motating metar	Start after satting is $D C$ brabing or rotational speed tracking atart
		Special porcosiel mencrgy load	Commect auibable braking reaistor on briking unit
E－05	Qure voltage in Dee process	Too shat Dece time（inclufing Luming prosese）	Prolong the Dectitre
		The loed incris is lce high	Comnect auitable brating reaistar on brating unít
		Abramal of supply voitage	Check the pownt aryply
E－06	Ower voltage is conslant－speed cperating	Abnomsl of supply voltage	Check the power supply
		Specinl potenciel energy lowd	Censeat nuitaile breling raidar or brabing unit
F－87	Base undevoltage	Abocrual of aupply voltage or disocrmecting of coniselor（relay）	Chreck aupply voltage 따 reek help frixn manultacturtr
E－08	Mout overiond	Improper setting of V／F cuve ef treque boost	Adjust W／F carve and traque boost valur
		Law network yolinge：	Check netpheik woltage
		Motur hlocked ar load andiden change	Crack lowd
		Incorrect seting of motor overicond pratection Enator	Cosreet the retring
P－19	Diver averload	Improper serting of Y／F carve or tosque boast	Adjurn V／F curve end traque boost value
		Lew network voitnge	Chreck netwodk wot tage
		Too thert Act time	Prolong Asce time
		Too heavy loed	Select the driver with lingra power
E－10	Off load	Oulput curfenis lower then oiflowd delection	Chreck Ioad
E－11	Fuaction module fiult	Shent cirault a grounded of driver culpul	Chreck motrs wirting
		Inctantaneous over cartent of driver	Refer to actions of over current
		Obstructic⿴⿱冂一⿰丨丨丁口𧘇 of damage of sentilation chasured	Clear the vertilation chmonel ar replace the fon
		control board abearmiol or intrafinmer вaricus	Seak holp from manufarturer
		Power devise damage	Seek help from mamufucturx
E－12	Lnput phase lose	Phase lces of pown supply	Chrocik power surpply and wiring

E－13	Outpur phase less of autrunt imblance	Oupput phate failure amocg phase $\mathrm{U}, \mathrm{Y}, \mathbf{W}$	Chreck the driver＇s doutpul wiring
E－14	Shart trouble of output to gromd	regerved	reserved
$\begin{aligned} & \text { E-1S } \\ & \text { E-16 } \end{aligned}$	Heatrink owerhal I Heatrink antineal 2	Ambicnt ove－trunperature	Lower the ambient trmperature
		Fen damage	Rcplase the fran
		Obotrection of veutilation chanarel	Clear the vandilation chamurl
E－17	RSA85 communication failure	Migmatching with bayd rale of host PC	Adjust the beus rate
		RS4BS chasnel interforenct	Chect whelbes the condmurtication wiring is chield，whetber the wiring in eorrect；consider cannecting filter caparitre if nocessary．
		Conmmuncatim timecrus	retry
E－18	Keypad communication falt	Connecting line botheen koyped and contrel beard is darnared．	Replase the connecring line．
E－19	Extronal device fault	mput taminal of exdronal device tiult is ctoced	Discomext the traminel and elcar the finulty （chect the faull cause）
E－20	Current detestica fiult	Hall device or amplification circuit faut	Scek betp from mamufarture
		Auriliary power supply is damaged	
		Hall or power boand pring is bad contact	
E－2I	Motcor turing fralt	Wrong setiog of motmr parameters	Reser the motor parameter
		Mismatching of power specifiratim betwren driver and motisk	Seek hrip from manufariure
		Taning timeoct	Cbeck moxtor wiring
E－22	FEPPROM R／W frult	ELPPROM fmit	Seek help fiem manuficturn
E－23	Parametex copy fault	Uplead Eavilt of the driver paramatcr to oppration panct	Check wining of cperation panei
		Dowalcad fanlt of parameter fram operation panel to the driver	Check wining of epersatican panel
		Parancter downlowd without uploud in adrancs	Uplond parameters first，then dowaleed
E－24	PID fredback diseomecting	PID feedback wire is loowen	Check feechastk prining
		Feedhack value krower than distranection defection value	Adjuer desterien inpat threabold
E－25	Vollagr frechbert discomecting	Foedtarit value lower than disconnectinn detaction palue	Adjuat detection imput tureahold
E－26	Arrival of operation lirmit time	Arrivel of operation timit time	Sosk help from yent
E－27	Co－prosensir communticalion fault	reserved	reverved
E－28	Encoder disconmecting	reserved	reserved
E－29	Lager deviatico of upeod	reamed	reactued
E－30	Oreaspeed fauh	regerved	reserved

6.1 Abmarnal Phemoman Soluthen

Dreing the drivir operation，the common abnormel phenomena end solving actives ane te shawid in Table 6－2．

Table 6-2 Common Abnormal Phenomena and Counteractions

Haxan -		Possible reasons of fault and actions to take
motor not running	LED no display	Check whether there is power failure, or phase loss of input power, check if the power line is connected correctly.
	LED no display, but the internal charging indicator is on	Check if there is problems with wiring or socket tulard to keypad. Whius the voltage of internal control munch to check if the switching power supply is functioning well. If not, check its inlet wire, start oscillation and stabilivolt to see if they works well.
	Motor droning	The moter load is too much. Reduce the load
	No abnormal phenomena	Check if it is in trip status or hasn't reset after tripping, check whether it is in restart Hethe after power down, whether the keypad is reset, whether it is in running status, multi-speed operation status, the specific operation status or non-operation status. Try recovering factory set.
		Check whether the running command is sent
		Check whether the operation frequency is set at 0 .
The motor hat not Aco/Dec successfully		Improper setting of Acc/Dec time. Increase the value of Acc/Dec time.
		The current limit is set too low. Increase the value.
		Over-voltage protection action during decelerating. Increase the decelerating time.
		Improper setting of carrier frequency, too much load may cause oscillation.
		The load is too heavy, and the torque is not enough. Increase torque boost value in V/F mode. If not working, switch to auto torque boost mode, and the parameters should be in consistent with the actual value. If still not working switch to flux vector control mode, and check the motor parameters and actual values to see if they are matched, meanwhile tune the motor parrameters.
		Mismaching of motor power and driver power. Set the motor parameters at actual value.
		One driver for several motor. Please change the torque boost mode to manual mode.
The motor can rotate, but speed regulation can't be realized.		Improper setting of upper and lower limit of frequency
		The frequency is set too low, or the frequency gain is set too low.
		Check whether the speed adjustment mode is in consistent with frequency setting.
		Check whether the load is too heavy, whether it is in overvoltage stalled waty overcurrent limiting state.
Speed changing during motor running		Frequent fluctuation of load Decrease the changing.
		Serious mismatching of rated value of the driver and motor. Set the motor parameters as actual velue.
		Frequency setting potentiometer is in bad connect or the frequency setting signal is in fluctuation. Switch to digit setting mode or increase filter time constant of analog input signal.
The rotation direction of motor is in 		Adjust phase sequence of output terminal $\mathrm{U}, \mathrm{V}, \mathrm{W}$
		Set the running direction as reverse ($\mathrm{F} 0.21=1$)
		Caused by phase loss of output. Check the motor wiring immediately.

7.1 Matila Mutuitania

Many factors such as ambient temperature, humidity, smog, internal component aging will give rise to the ocemen of potential faults. Therefore, it is necessary to conduct routine and periodic maintenance during storage or using of the driver. When the driver operates normally, please check if there are the following items:

1) abnormal sound or vibration of the motor;
2) abnormal heat protucing from the driver or motor;
3) high ambient temperature;
4) whether the load current is as usual;
5) whether the cooling fan of the driver rums normally

7.2 Fertolemaloinauir

To maintain a long-term normal operation, it is necessary to conduct periodic maintenanec according to the working life of internal electronic components. The working life varies with the operation condition. The following table is far reference.

part	normal working life
Cooling fan	$2 \sim 3$ years
Electrolytic capacitor	$4 \sim 5$ years
PCB	$5 \sim 8$ years

 and maintain a long-term stable operation.

General Inspection

1) whether screws of control terminals are loose. If so, tighten them with a screwdriver;
2) whether the main circuit terminals are properly connected; whether the cable or copper bar joints and screws are over thatat
whether the power cables and control cables are damaged, check especially for any wear on the cable insulation;
3) whether the connecting of power cable and cold pressing joint is loose, whether the insulating tapes around the joint itr 4 mod

4) before performing insulation tests the triver, thrualle the elrin between the driver and the power supply, the

 innilthin tester); please de not pier filid metre Insulation test of single main circuit terminal to ground is prohibited, or the driver be damaged. After testing, remember to tiur all the wire that short-circuit main prohibited, or the
5) if performing insulation test to the motor, be sure to discomect the cables between the driver and it Otherwise, the driver might be damaged.

[^0]: 0 ：decelerate to stop

